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Abstract 
This paper proposes a framework of automatically 
exploring the optimal size of a radial basis function 
(RBF) neural network. A dynamic self-organized 
learning algorithm is presented to adapt the structure 
of the network. The algorithm generates a new 
hidden unit based on the steady state error of network 
and the nearest distance from input data to the center 
of hidden unit. Furthermore, it also detects and 
removes any insignificant contributing hidden units. 
For optimizing the complexity growth of RBF neural 
network, the growing and pruning are combined 
during adaptation of RBF neural network structure. 
The examples of nonlinear dynamical system 
modeling are presented to illustrate the performance 
of the proposed algorithm. 
Keywords: Self-organized Learning, Learning 
Algorithm, Radial Basis Function Networks, 
Function Estimation, Convergence. 
 
1. Introduction 
Neural network research has gained increasing 
attention in recent years. Researchers from diverse 
areas, such as neuroscience, engineering, and 
computer science, are interested in recreating the 
computational structures of the human brain. One of 
the most important models is the feedforward 
artificial neural network. This kind of network is 
used to model some unknown system or process 
having an unambiguous input/output mapping. The 
network size, which is often measured by the number 
of hidden units in a single hidden layer network, 
reflects the capacity of the network to approximate 
an arbitrary function. A continuing question in the 
research of neural networks is what size of a neural 
network is required to solve a specific problem. If the 
training starts with a small network, it is possible that 
learning cannot be achieved. On the other hand, if a 
large network is used, the learning process can be 
very slow and/or overfitting may occur. Hence, there 
is no standard on how one can implement a network 
which will solve a specific problem. Generally, a 
trial and error approach is adopted to find the suitable 
network size for a given problem. During a trial and 
error period, the searching will be terminated as soon 
as a satisfied performance is achieved. 

Radial basis function (RBF) neural networks have 
been widely used for nonlinear function 
approximation. The original RBF method has been 
traditionally used for strict multivariable function 
interpolation [1] and it requires as many RBF units as 
data points. This is rarely practical because the large 
size of data points is usually required to fit the data 
relationship. D. Broomhead and D. Lowe [2] 
removed this strict interpolation restriction and 
provided a neural network architecture where the 
number of RBF neurons can be far less than the data 
points. Compared with other types of neural 
networks like backpropagation feedforward 
networks, the RBF neural network requires less 
computation time for learning [3] and also has a 
more compact topology [4]. J. Moody and C. Darken 
[3] proposed learning algorithm of RBF networks by 
employing unsupervised produces for selecting a 
fixed number of radial basis function centers. The 
algorithm offers good computational efficiency and 
convergence speed. 
J. Platt [5] proposed a sequential or online learning 
algorithm for resource allocating network (RAN). In 
Platt’s algorithm, hidden neurons are added based on 
the ‘novelty’ of the new data and the weights are also 
estimated using the well-known least mean square 
(LMS) algorithm. A new pattern is considered novel 
if the error between the network output and desired 
output is large. If no additional hidden neuron is 
added, the parameters of the existing hidden neurons, 
such as the centers, widths, and weights, are updated. 
V. Kadirkamanathan and M. Niranjan [6] interpreted 
Platt’s RAN from a function approach and improved 
RAN by using an extended Kalman filter (EKF) 
instead of the LMS to estimate the network 
parameters. Their network, called RANEKF, is more 
compact and has faster convergence than RAN. S. 
Arisariyawong and S. Charoenseang [7] proposed the 
self-organized learning for growing of complexity of 
RBF neural networks. Their algorithm generates a 
new hidden unit based on the steady state error of 
network and the nearest distance from input data to 
the center of hidden unit. They showed that the self-
organized learning algorithm for RBF neural 
networks yields good performance in terms of 
convergence and accuracy compared with 
conventional multilayer feedforward neural network. 



However, one drawback of RAN [5], RANEKF [6] 
and self-organized learning [7] is that once a hidden 
unit is created, it will never be removed. This leads 
the network to produce some hidden units which are 
initially active but those end up to contribute a little 
to the network output. Furthermore, pruning becomes 
imperative for the identification of nonlinear systems 
with changing dynamics. The network is without 
pruning will result in numerous inactive hidden 
neurons being present. If inactive hidden units can be 
detected and removed during learning, a more 
parsimonious network topology can then be realized. 
Also, the problems of overparameterisation could be 
avoided when the neural networks are employed for 
control.  
In this paper, we propose the learning algorithm to 
optimize the complexity growth of the RBF neural 
networks. It comprises growing and pruning 
algorithms for adapting the structure of the network.  
 
2. Model description 
In the RBF neural network model, the jth output, yj(i), 
is given by the following equation: 
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where K  is the number of RBFs used, and 
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the width value vector of RBF, respectively. These 
vectors are defined as: 
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Also, { }Kkw jk ,  ,2 ,1 K=  are the weights of RBFs 
connected with the jth output. Figure 1 shows the 
structure of a RBF neural network.  
 

 
 

Fig. 1 Structure of RBF neural network 
 

The RBF neural network representation can be 
implemented in the form of a two-layered network. 
For a given set of centers, the first layer performs a 

fixed nonlinear transformation which maps the input 
space onto a new space. Each term (.)kΦ  forms the 
activation function in a unit of the hidden layer. The 
output layer then implements a linear combination of 
this new space. 
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Moreover, the most popular choice for (.)φ  is the 
Gaussian form defined as 
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In this case, the jth output in equation (1) becomes 
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Define the following sets: 
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Given the N input/output data and the specified root 
mean squared error 0 >ε , the identification problem 
can be considered as obtaining the minimal number 
K of RBFs and the optimal solution ( )*** ,, WC Θ  

which satisfies the inequality ( ) ε<Θ *** ,, WCE , 
where E is the optimization criteria defined as: 
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where )( py j  and )( py d
j  are the jth model output 

and the jth desired output, respectively, for the input 
of the training set. 
 
3. The learning scheme 
In order to solve the identification problem, the 
gradients of E are derived with respect to the 
parameters jkkiki wc  and , ,σ . Assuming that the 
number of RBFs, K, is fixed,  
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By using the gradients in Equation (8), the 
identification problem can be solved for a fixed 
number of neurons by using appropriate gradient 
methods such as the steepest descent method. For N 
input/output data, the sets of C(h), )(hσ , and W(h) 
at iteration h are computed from the sets of  C(h-1), 

)1( −hσ , and W(h-1) by the following learning rule 
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I = 1, …, m,  k=1, …, K,   j=1, …, n and h is the 
iteration number. 
 
4. Dynamic Self-organized Learning Algorithm 
Initially, the network begins with two hidden units. 
The following three criteria decide whether an input 
x(q) should be added to the hidden-layer of the 
network [7], 
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where R(h) is the percentaged decreasing rate of 
error at iteration h. cnr is center of a hidden unit 
whose distance from x(q) is the nearest among those 
of all of the other hidden unit centers. emin, nε , and 

Rε  are thresholds which are selected appropriately. 
If these criteria are found during the training process, 
a new basis function is generated. A new basis 
function is generated in such a way that its center is 
located at the point where the maximum of absolute 
inference error occurs in the input space. 
When a new basis function is added to the network 
the parameters associated with the unit are assigned 
as follows: 
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The steepest descent method is also applied for 
adjusting the weights, centers, and widths of the 
network. 

In addition, to keep the RBF neural network in an 
optimal size and make sure that there are no 
superfluous basis function units, the pruning 
algorithm is combined during adaptation of RBF 
neural network structure. For this purpose, the 
measurement criteria for RBF neural network 
pruning are defined as follows; 
(a) The normalized output value n

kr  which can be 
expressed by the following equation: 
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where n

ko  is the output for the thk  basis function 

unit, nomax  is the largest output of basis function 

unit for the thn  input. 
(b) The variance of the weight among hidden-output 

connections iHOWV , which can be expressed 
by the following equation: 
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where N  is the number of hidden units, Wij is the 
weight between hidden node i and output node j, 
and iW  is defined as: 
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This measurement is the calculation of the variance 
of the weight among hidden-output connections. 
From our observation in the case of RBF neural 
networks, the hidden units play an important role 
tending to have the small variance, compared with 
the other less significant hidden units. This measure 
correlates well with the HOV criteria, which was 
proposed by S. Erdogan, Ng. Geok, and P. Chan [8]. 
However, HOWV  requires at least two hidden units. 
Importantly, if n

kr  is less than a thresholdδ r or 
HOWV  is larger than a threshold HOWVδ during 
training process, the kth hidden unit should be 
removed. 
 
5. Experimental Results 
In this section, results obtained from the simulation, 
which implements the proposed algorithm for the 
nonlinear system identification, are presented. They 
consist of two parts. First, the case of a static 
nonlinear system similarly to one in [9] [10] is 
considered. The second part studies the case of 
dynamic nonlinear system whose dynamical 
properties are changed online by adding and 
removing some functions to/from the system model. 



Furthermore, obtained results are compared with the 
ones obtained from a self-organized learning 
algorithm, which was proposed by S. Arisariyawong 
and S. Charoenseang [7]. The advantages of a 
dynamic self-organized learning algorithm are also 
highlighted. Experiments and their results are 
described as follows: 
 
5.1 Static nonlinear system identification 
For this problem, a nonlinear function, which 
consists of three exponential functions, is shown in  
the following way: 
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The aim is to evolve a minimal basis function using 
our pruning algorithm and a self-organized learning 
algorithm [7] to approximate the function with small 
error. For this approximation, 121 training patterns 
(x,y) are provided, where [ ]1,...,0∈x . These 
algorithms will stop learning when the sum squared 
error is less than 0.005.  
 
Table 1: Actual and estimated centers and width  
              Values 

The proposed pruning algorithm 
Actual center 0.3 0.7 0.5 
Estimated center 0.2944 0.7066 0.5030 
Actual width 2σ  0.01 0.01 0.02 

Estimated width 2σ  0.0089 0.0086 0.0346 
Self-organized learning algorithm [7] 

Actual center 0.3 0.7 0.5 
Estimated center 0.3098 0.6919 0.5020 
Actual width 2σ  0.01 0.01 0.02 

Estimated width 2σ  0.0115 0.0110 0.0128 
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Fig. 2 Number of hidden units during network  

               adaptation 
              (a) Self-organized learning algorithm [7] 
              (b) The proposed pruning algorithm 
 
Fig. 2 shows the number of hidden units during 
training process with a self-organized learning 
algorithm [7] and our proposed pruning algorithm. 
These algorithms require careful selection of 
threshold parameters as defined in the above section. 
Based on parametric studies, the parameters required 
for the optimal basis function unit are chosen as 
follows: ,02.0min =e  ,2.0=Rε  ,3.0=nε  

02.0=HOWVδ . 
Since the function for being approximated is in the 
form of summation of three Gaussian functions, one 
can say theoretically that the RBF neural network 
should have three hidden units with Gaussian 
functions in its hidden layer. As shown in Fig.2 (a) 
and (b), both algorithms can learn to get the optimal 
number of hidden units but our proposed pruning 
algorithm can learn more quickly than the self-
organized learning algorithm [2]. 
Table 1 presents the comparison of the center and 
width estimation from both algorithms. From the 
Table 1, it is obvious that both of the center and 
width values for the Gaussian functions in the hidden 
units are close to the actual values. In addition, both 
learning algorithms can accurately approximate a 
nonlinear function with an optimal network’s size. 
 
5.2 Dynamic nonlinear system identification 
To further study the capability of adaptation of the 
dynamic self-organized learning algorithm, the 
system equation is changed during simulation as 
follows: 
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where f(x) is defined as follows: 
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The aim is to further study the adaptive capability in 
the dynamic self-organized learning algorithm 
compared with one in the self-organized learning 
algorithm proposed by [7]. For this approximation, 
121 training patterns (x,y) are provided, where 

[ ]1,...,0∈x . These algorithms will stop learning when 
the sum squared error is less than 0.005.  
It can be seen that all parameters in equation (16) are 
fixed during the epochs are equal or less than 190. 
After epochs are greater than 190, the function f(x) 
was added in the way expressed by the equations 
(17)-(18). The dynamic self-organized learning 
algorithm and a self-organized learning algorithm [7] 
are used for online identification of this time-varying 
nonlinear system.   
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Fig. 3 Number of hidden units and sum squared  

              error during network adaptation 
(a) Number of hidden units in the self-  
       organized learning algorithm proposed   
       in  [7] 
(b) Sum squared error in the self-organized 

learning algorithm proposed in [7] 
(c) Number of hidden units in the dynamic 

self-organized learning algorithm 
(d) Sum squared error in the dynamic self-

organized learning algorithm 
 
Fig. 3(a)-3(d) show the simulation results. In Fig. 
3(c), the dynamic self-organized learning algorithm 
can learn to obtain the optimal number of hidden 
units during the epochs are equal or less than 190. 
From the 191th epoch to the 400th epoch, some 
hidden units are generated to reduce the sum squared 
error. Subsequently, the superfluous hidden units are 
detected and removed from the hidden layer to keep 
the network’s size optimal when the system equation 
is set back to the original one again. 
The self-organized learning algorithm [7], is also 
applied to this time-varying nonlinear system. Its 
results are also shown in Fig. 3(a) and 3(b) for 
comparison purpose. Since there is no method of 
reducing the number of hidden units in the self-
organized learning algorithm [7], the size of the 
network is not reduced during the process of 
identification for this time-varying system. At the 
end of process, the number of hidden units is highly 
excessive compared with the optimal one obtained 



from the dynamic self-organized learning algorithm. 
Furthermore, time required to reduce the sum 
squared error of a self-organized learning algorithm 
[7] is larger. Finally, this clearly indicates that the 
excessive number of hidden units generated by the 
self-organized learning algorithm [7] makes the 
network to be a highly overparameterised model with 
all attendant problems.  
 
6. Conclusions 
In this paper, an algorithm for automatically 
exploring the optimal size of a radial basis function 
(RBF) neural network for identifying the nonlinear 
systems was proposed. This algorithm provides an 
effective way to increase and decrease the number of 
hidden units depending on the normalized output 
value of hidden units and the variance of the weight 
among hidden-output connections. Experiments of 
this algorithm for both static and dynamic nonlinear 
system identification were presented. Specially, the 
adaptive capability of the algorithm for tracking the 
time-varying dynamics of a nonlinear system was 
also demonstrated. 
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