
Dynamic Self-organized Learning for Optimizing the Complexity Growth of
Radial Basis Function Neural Networks

Somwang Arisariyawong and Siam Charoenseang*

Mechanical Engineering Department, Faculty of Engineering,
Srinakharinwirot University, Ongkharak, Nakornayok, 26120, THAILAND

E-mail: somwang@fibo.kmutt.ac.th
Center of Operation for FIeld roBOtics Development (FIBO)*

King Mongkut's University of Technology Thonburi
 Suksawasd, 48 Bangmod, Bangkok, 10140, THAILAND

E-mail: siam@fibo.kmutt.ac.th

Abstract
This paper proposes a framework of automatically
exploring the optimal size of a radial basis function
(RBF) neural network. A dynamic self-organized
learning algorithm is presented to adapt the structure
of the network. The algorithm generates a new
hidden unit based on the steady state error of network
and the nearest distance from input data to the center
of hidden unit. Furthermore, it also detects and
removes any insignificant contributing hidden units.
For optimizing the complexity growth of RBF neural
network, the growing and pruning are combined
during adaptation of RBF neural network structure.
The examples of nonlinear dynamical system
modeling are presented to illustrate the performance
of the proposed algorithm.
Keywords: Self-organized Learning, Learning
Algorithm, Radial Basis Function Networks,
Function Estimation, Convergence.

1. Introduction
Neural network research has gained increasing
attention in recent years. Researchers from diverse
areas, such as neuroscience, engineering, and
computer science, are interested in recreating the
computational structures of the human brain. One of
the most important models is the feedforward
artificial neural network. This kind of network is
used to model some unknown system or process
having an unambiguous input/output mapping. The
network size, which is often measured by the number
of hidden units in a single hidden layer network,
reflects the capacity of the network to approximate
an arbitrary function. A continuing question in the
research of neural networks is what size of a neural
network is required to solve a specific problem. If the
training starts with a small network, it is possible that
learning cannot be achieved. On the other hand, if a
large network is used, the learning process can be
very slow and/or overfitting may occur. Hence, there
is no standard on how one can implement a network
which will solve a specific problem. Generally, a
trial and error approach is adopted to find the suitable
network size for a given problem. During a trial and
error period, the searching will be terminated as soon
as a satisfied performance is achieved.

Radial basis function (RBF) neural networks have
been widely used for nonlinear function
approximation. The original RBF method has been
traditionally used for strict multivariable function
interpolation [1] and it requires as many RBF units as
data points. This is rarely practical because the large
size of data points is usually required to fit the data
relationship. D. Broomhead and D. Lowe [2]
removed this strict interpolation restriction and
provided a neural network architecture where the
number of RBF neurons can be far less than the data
points. Compared with other types of neural
networks like backpropagation feedforward
networks, the RBF neural network requires less
computation time for learning [3] and also has a
more compact topology [4]. J. Moody and C. Darken
[3] proposed learning algorithm of RBF networks by
employing unsupervised produces for selecting a
fixed number of radial basis function centers. The
algorithm offers good computational efficiency and
convergence speed.
J. Platt [5] proposed a sequential or online learning
algorithm for resource allocating network (RAN). In
Platt’s algorithm, hidden neurons are added based on
the ‘novelty’ of the new data and the weights are also
estimated using the well-known least mean square
(LMS) algorithm. A new pattern is considered novel
if the error between the network output and desired
output is large. If no additional hidden neuron is
added, the parameters of the existing hidden neurons,
such as the centers, widths, and weights, are updated.
V. Kadirkamanathan and M. Niranjan [6] interpreted
Platt’s RAN from a function approach and improved
RAN by using an extended Kalman filter (EKF)
instead of the LMS to estimate the network
parameters. Their network, called RANEKF, is more
compact and has faster convergence than RAN. S.
Arisariyawong and S. Charoenseang [7] proposed the
self-organized learning for growing of complexity of
RBF neural networks. Their algorithm generates a
new hidden unit based on the steady state error of
network and the nearest distance from input data to
the center of hidden unit. They showed that the self-
organized learning algorithm for RBF neural
networks yields good performance in terms of
convergence and accuracy compared with
conventional multilayer feedforward neural network.

However, one drawback of RAN [5], RANEKF [6]
and self-organized learning [7] is that once a hidden
unit is created, it will never be removed. This leads
the network to produce some hidden units which are
initially active but those end up to contribute a little
to the network output. Furthermore, pruning becomes
imperative for the identification of nonlinear systems
with changing dynamics. The network is without
pruning will result in numerous inactive hidden
neurons being present. If inactive hidden units can be
detected and removed during learning, a more
parsimonious network topology can then be realized.
Also, the problems of overparameterisation could be
avoided when the neural networks are employed for
control.
In this paper, we propose the learning algorithm to
optimize the complexity growth of the RBF neural
networks. It comprises growing and pruning
algorithms for adapting the structure of the network.

2. Model description
In the RBF neural network model, the jth output, yj(i),
is given by the following equation:

[]

Ninj

cixwiy kkk

K

k
jkj

,...., 2 ,1 ,...., 2 ,1

,),()(
1

==

Φ= ∑
=

σ
 (1)

where K is the number of RBFs used, and

m
k

m
k RRc ∈∈ σ, , are the center value vector and

the width value vector of RBF, respectively. These
vectors are defined as:

[]
[] KkR

KkRcccc
mT

kkk

mT
kmkkk

,......,1 ,

,......,1 ,

km21

21

=∈=

=∈=

σσσσ K

K
(2)

Also, { }Kkw jk , ,2 ,1 K= are the weights of RBFs
connected with the jth output. Figure 1 shows the
structure of a RBF neural network.

Fig. 1 Structure of RBF neural network

The RBF neural network representation can be
implemented in the form of a two-layered network.
For a given set of centers, the first layer performs a

fixed nonlinear transformation which maps the input
space onto a new space. Each term (.)kΦ forms the
activation function in a unit of the hidden layer. The
output layer then implements a linear combination of
this new space.

),,(),,(kikiiki

m

mikkk cxcx σφσ
=
Π=Φ (3)

Moreover, the most popular choice for (.)φ is the
Gaussian form defined as

()[]kikiikikiiki cxcx σσφ /exp),,(2−−= (4)

In this case, the jth output in equation (1) becomes

[]∑ ∑
= = 








−−−=
k

k

m

i
kikiijki cxwiy

1 1

2 /)(exp)(σ (5)

Define the following sets:

{ }
{ }
{ }njKkwW

miKk

miKkcC

jk

ki

ki

, 2, ,1 , , ,2 ,1

 , ,2 ,1 , , 2, ,1

 , ,2 ,1 , , ,2 ,1

KK

KK

KK

===

===Θ

===

σ (6)

Given the N input/output data and the specified root
mean squared error 0 >ε , the identification problem
can be considered as obtaining the minimal number
K of RBFs and the optimal solution ()*** ,, WC Θ

which satisfies the inequality () ε<Θ *** ,, WCE ,
where E is the optimization criteria defined as:

() []∑∑
= =

−=Θ
K

k

N

p
j

d
j pypyWCE

1 1

2
)()(5.0,, (7)

where)(py j and)(py d
j are the jth model output

and the jth desired output, respectively, for the input
of the training set.

3. The learning scheme
In order to solve the identification problem, the
gradients of E are derived with respect to the
parameters jkkiki wc and , ,σ . Assuming that the
number of RBFs, K, is fixed,

[] [] [][]

[] [] [][]

[] []

Kknj

cpxpypy
w
E

cpxcpxpypywE

cpxcpxpypyw
c
E

kkk

N

j
d
j

ki

N

p

n

j
kiikkkj

d
jjk

kiki

N

p

n

j
kiikkkj

d
jjk

kiki

 , ,1 , ,1

,),()()(

)(,),()()(2

)(,),()()(2

1 1

2
3

1 1
2

KK ==

Φ⋅−−=
∂
∂

−⋅Φ⋅−⋅









−=

∂
∂

−⋅Φ⋅−⋅









−=

∂
∂

∑

∑∑

∑∑

= =

= =

σ

σ
σσ

σ
σ

 (8)

C
σ

C σ

C
σ

Basis Function

σ
C

) , , (σ c x Φ
) , , (σ c x Φ

1 x

2 x

i x

1

2

K

∑
1 w

2 w

K w

y ˆ

By using the gradients in Equation (8), the
identification problem can be solved for a fixed
number of neurons by using appropriate gradient
methods such as the steepest descent method. For N
input/output data, the sets of C(h),)(hσ , and W(h)
at iteration h are computed from the sets of C(h-1),

)1(−hσ , and W(h-1) by the following learning rule

jk
jkjk

ki
kiki

ki
kiki

w
Ehwhw

Ehh

c
Ehchc

∂
∂

⋅−−=

∂
∂

⋅−−=

∂
∂

⋅−−=

α

σ
ασσ

α

)1()(

)1()(

)1()(

 (9)

I = 1, …, m, k=1, …, K, j=1, …, n and h is the
iteration number.

4. Dynamic Self-organized Learning Algorithm
Initially, the network begins with two hidden units.
The following three criteria decide whether an input
x(q) should be added to the hidden-layer of the
network [7],

nnr

R

h

cqx

hE
hEhEhR

ehyhye

ε

ε

>−

<







−

−−
⋅=

>−=

)(

)1(
)1()(100)(

)(ˆ)(min

 (10)

where R(h) is the percentaged decreasing rate of
error at iteration h. cnr is center of a hidden unit
whose distance from x(q) is the nearest among those
of all of the other hidden unit centers. emin, nε , and

Rε are thresholds which are selected appropriately.
If these criteria are found during the training process,
a new basis function is generated. A new basis
function is generated in such a way that its center is
located at the point where the maximum of absolute
inference error occurs in the input space.
When a new basis function is added to the network
the parameters associated with the unit are assigned
as follows:

njqyw

miqxc

d
jiK

iK

iiK

 , ,1),(

datainput andcenter the
between distance ofdeviation Standard

 , ,1),(

,1

,1

,1

K

K

==

=

==

+

+

+

σ

 (11)

The steepest descent method is also applied for
adjusting the weights, centers, and widths of the
network.

In addition, to keep the RBF neural network in an
optimal size and make sure that there are no
superfluous basis function units, the pruning
algorithm is combined during adaptation of RBF
neural network structure. For this purpose, the
measurement criteria for RBF neural network
pruning are defined as follows;
(a) The normalized output value n

kr which can be
expressed by the following equation:

),...,1(,
max

Kk
o
o

r n

n
kn

k == (12)

where n

ko is the output for the thk basis function

unit, nomax is the largest output of basis function

unit for the thn input.
(b) The variance of the weight among hidden-output

connections iHOWV , which can be expressed
by the following equation:

()∑
=

−
−

=
N

j
iiji WW

N
HOWV

1

2

1
1 (13)

where N is the number of hidden units, Wij is the
weight between hidden node i and output node j,
and iW is defined as:

∑
=

=
N

j
iji W

N
W

1

1 (14)

This measurement is the calculation of the variance
of the weight among hidden-output connections.
From our observation in the case of RBF neural
networks, the hidden units play an important role
tending to have the small variance, compared with
the other less significant hidden units. This measure
correlates well with the HOV criteria, which was
proposed by S. Erdogan, Ng. Geok, and P. Chan [8].
However, HOWV requires at least two hidden units.
Importantly, if n

kr is less than a thresholdδ r or
HOWV is larger than a threshold HOWVδ during
training process, the kth hidden unit should be
removed.

5. Experimental Results
In this section, results obtained from the simulation,
which implements the proposed algorithm for the
nonlinear system identification, are presented. They
consist of two parts. First, the case of a static
nonlinear system similarly to one in [9] [10] is
considered. The second part studies the case of
dynamic nonlinear system whose dynamical
properties are changed online by adding and
removing some functions to/from the system model.

Furthermore, obtained results are compared with the
ones obtained from a self-organized learning
algorithm, which was proposed by S. Arisariyawong
and S. Charoenseang [7]. The advantages of a
dynamic self-organized learning algorithm are also
highlighted. Experiments and their results are
described as follows:

5.1 Static nonlinear system identification
For this problem, a nonlinear function, which
consists of three exponential functions, is shown in
the following way:











 −
−+











 −
−+











 −
−=

02.0
)5.0(exp

01.0
)7.0(exp

01.0
)3.0(exp)(

2

22

x

xxxy

 (15)

The aim is to evolve a minimal basis function using
our pruning algorithm and a self-organized learning
algorithm [7] to approximate the function with small
error. For this approximation, 121 training patterns
(x,y) are provided, where []1,...,0∈x . These
algorithms will stop learning when the sum squared
error is less than 0.005.

Table 1: Actual and estimated centers and width
 Values

The proposed pruning algorithm
Actual center 0.3 0.7 0.5
Estimated center 0.2944 0.7066 0.5030
Actual width 2σ 0.01 0.01 0.02

Estimated width 2σ 0.0089 0.0086 0.0346
Self-organized learning algorithm [7]

Actual center 0.3 0.7 0.5
Estimated center 0.3098 0.6919 0.5020
Actual width 2σ 0.01 0.01 0.02

Estimated width 2σ 0.0115 0.0110 0.0128

0 50 100 150 200 250 300 350
1

1.5

2

2.5

3

3.5

4

Epochs

N
um

be
r o

f h
id

de
n

un
its

(a)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Epochs

N
um

be
r o

f h
id

de
n

un
its

(b)

Fig. 2 Number of hidden units during network

 adaptation
 (a) Self-organized learning algorithm [7]
 (b) The proposed pruning algorithm

Fig. 2 shows the number of hidden units during
training process with a self-organized learning
algorithm [7] and our proposed pruning algorithm.
These algorithms require careful selection of
threshold parameters as defined in the above section.
Based on parametric studies, the parameters required
for the optimal basis function unit are chosen as
follows: ,02.0min =e ,2.0=Rε ,3.0=nε

02.0=HOWVδ .
Since the function for being approximated is in the
form of summation of three Gaussian functions, one
can say theoretically that the RBF neural network
should have three hidden units with Gaussian
functions in its hidden layer. As shown in Fig.2 (a)
and (b), both algorithms can learn to get the optimal
number of hidden units but our proposed pruning
algorithm can learn more quickly than the self-
organized learning algorithm [2].
Table 1 presents the comparison of the center and
width estimation from both algorithms. From the
Table 1, it is obvious that both of the center and
width values for the Gaussian functions in the hidden
units are close to the actual values. In addition, both
learning algorithms can accurately approximate a
nonlinear function with an optimal network’s size.

5.2 Dynamic nonlinear system identification
To further study the capability of adaptation of the
dynamic self-organized learning algorithm, the
system equation is changed during simulation as
follows:

)(
02.0

)5.0(exp

01.0
)7.0(exp

01.0
)3.0(exp)(

2

22

xfx

xxxy

+










 −
−+











 −
−+











 −
−=

 (16)

where f(x) is defined as follows:

 0)(=xf ; if epochs ≤ 190 or epochs > 400 (17)











 −
−+











 −
−=

01.0
)1.0(exp

02.0
)9.0(exp)(

22 xxxf

 ; if epochs > 190 (18)

The aim is to further study the adaptive capability in
the dynamic self-organized learning algorithm
compared with one in the self-organized learning
algorithm proposed by [7]. For this approximation,
121 training patterns (x,y) are provided, where

[]1,...,0∈x . These algorithms will stop learning when
the sum squared error is less than 0.005.
It can be seen that all parameters in equation (16) are
fixed during the epochs are equal or less than 190.
After epochs are greater than 190, the function f(x)
was added in the way expressed by the equations
(17)-(18). The dynamic self-organized learning
algorithm and a self-organized learning algorithm [7]
are used for online identification of this time-varying
nonlinear system.

0 100 200 300 400 500 600 700 800
1

2

3

4

5

6

7

8

9

10

Epochs

N
um

be
r o

f h
id

de
n

un
its

(a)

0 100 200 300 400 500 600 700 800
10-2

10-1

100

101

102

103

Epochs

S
um

 s
qu

ar
ed

 e
rro

r

(b)

0 100 200 300 400 500 600 700
1

2

3

4

5

6

7

8

9

10

Epochs

N
um

be
r o

f h
id

de
n

un
its

(c)

0 100 200 300 400 500 600 700
10-2

10-1

100

101

102

103

Epochs

S
um

 s
qu

ar
ed

 e
rro

r

(d)

Fig. 3 Number of hidden units and sum squared

 error during network adaptation
(a) Number of hidden units in the self-
 organized learning algorithm proposed
 in [7]
(b) Sum squared error in the self-organized

learning algorithm proposed in [7]
(c) Number of hidden units in the dynamic

self-organized learning algorithm
(d) Sum squared error in the dynamic self-

organized learning algorithm

Fig. 3(a)-3(d) show the simulation results. In Fig.
3(c), the dynamic self-organized learning algorithm
can learn to obtain the optimal number of hidden
units during the epochs are equal or less than 190.
From the 191th epoch to the 400th epoch, some
hidden units are generated to reduce the sum squared
error. Subsequently, the superfluous hidden units are
detected and removed from the hidden layer to keep
the network’s size optimal when the system equation
is set back to the original one again.
The self-organized learning algorithm [7], is also
applied to this time-varying nonlinear system. Its
results are also shown in Fig. 3(a) and 3(b) for
comparison purpose. Since there is no method of
reducing the number of hidden units in the self-
organized learning algorithm [7], the size of the
network is not reduced during the process of
identification for this time-varying system. At the
end of process, the number of hidden units is highly
excessive compared with the optimal one obtained

from the dynamic self-organized learning algorithm.
Furthermore, time required to reduce the sum
squared error of a self-organized learning algorithm
[7] is larger. Finally, this clearly indicates that the
excessive number of hidden units generated by the
self-organized learning algorithm [7] makes the
network to be a highly overparameterised model with
all attendant problems.

6. Conclusions
In this paper, an algorithm for automatically
exploring the optimal size of a radial basis function
(RBF) neural network for identifying the nonlinear
systems was proposed. This algorithm provides an
effective way to increase and decrease the number of
hidden units depending on the normalized output
value of hidden units and the variance of the weight
among hidden-output connections. Experiments of
this algorithm for both static and dynamic nonlinear
system identification were presented. Specially, the
adaptive capability of the algorithm for tracking the
time-varying dynamics of a nonlinear system was
also demonstrated.

7. References
[1] M. Powell, “Radial basis function for

multivariate interpolation: A review”, in
Mason, J.C., and Cox, M.G. (Eds.),
“Algorithm for approximation” (Clarendon
Press, Oxford, 1987), pp. 143-168.

[2] D. Broomhead and D. Lowe, “Multivariable
functional interpolation and adaptive
networks”, Complx Syst., 1988, Vol. 2, pp.
321-355.

[3] J. Moody and C. Darken, “Fast learning in
network of locally-tuned processing units”,
Neural Comput., 1989, Vol. 1, pp. 281-294.

[4] S. Lee and R. Kil , “A Gaussian potential
function network with hierarchically self-
organizing learning”, Neural Networks,
1991,Vol. 4, pp. 207-224.

[5] J. Patte, “A resource allocating network for
function interpolation”, Neural Computing,
1991, Vol. 3, pp. 213-225.

[6] V. Kadirkamanathan and M. Niranjan, “A
function estimation approach to sequential
learning with neural network”, Neural
Computing, 1993, Vol. 5, pp. 954-975.

[7] S. Arisariyawong and S. Charoenseang,
“Self-organized Learning in Complexity
Growing of Radial Basis Function
Networks”, In Proc. 2002 Int. Tech. Conf.
on Circuits/Systems, Computers and
Communications, Phuket, Thailand, July
2002, Vol.1, pp. 30-33.

[8] S. Erdogan, Ng. Geok, and P. Chan,
“Measurement Criteria for Neural Network
Pruning”, In Proc. IEEE TENCON – Digital
Signal Processing Applications, Perth, WA,
Australia, Nov. 1996, Vol. 1, pp. 83-89.

[9] S. Chen, A. Billings, and M. Grant,
“Recursive hybrid algorithm for non-linear
system identification using radial basis
function networks”, Int. J. Control, 1992,
Vol. 55, pp. 1051-1070.

[10] L. Chen, C. Chen, and Y. Cheng, “Hybrid
learning algorithm for Gaussian potential
function network”, In Proc. IEE D, 1993,
Vol. 140, pp. 442-448.

