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Abstract 
In this paper, dynamic modeling of a one-wheel robot, 
which is subjected to nonholonomic constraints, was 
derived by using Kane’s method. By imposing the 
constraints in the dynamic equations leads to system 
order reduction. This method can be applied without 
using Lagrange multipliers. So the computation 
complexity is reduced. The motion of the one-wheel 
robot integrated with a gyroscope for stabilization and 
steering was described. Numerical simulations are 
presented to verify validity of the model in agreement 
with the Lagrange’s formulation found in early works by 
other researchers.  

Keywords: One-Wheel Robot, Kane’s Method, 
Gyroscopic Motion, Nonholonomic Constraints  

Nomenclatures:  
wR  Radius of disk 7q  Tilt angle of gyroscope  

gR  Radius of gyroscope 8q  Spin angle of gyroscope 
M  Total mass of robot iu  Generalized speeds  

wm Mass of disk A Cω Angular velocity of 
frame C wrt. frame A 

gm Mass of gyroscope A Cα Angular acceleration of 
frame C wrt. frame A 

pm Mass of driving unit 
exclude gyroscope 

A BP
Position vector of point 
B wrt. frame A 

1q  Heading angle A Bv Linear velocity of point 
B wrt. frame A 

2q  Leaning angle A Ba Linear acceleration of 
point B wrt. frame A 

3q  Wheel angle ∗C  Mass center of body C 

4q  Position of point 
contact P along ax 1T  Leaning torque 

5q  Position of point 
contact P along ay 2T  Rolling torque 

6q  Pendulum angle of mp
wrt. contact point  1,eqT  Tilting rate 

 
1. Introduction 
Recently, new types of mobile robots which have 
internal driving mechanisms contained in closed surfaces 
have been developed. Bicchi [1] and Halme et al. [2] 
developed spherical profile robots with internal wheels 
roll on the surface inside the balls. Similar work was 
done by Bhattacharya and Agrawal [3] but their robot is 
driven by two perpendicular rotors attached inside the 
sphere. Brown and Xu [4] proposed a unique wheel-like 

robot called Gyrover which was actuated by an internal 
gyroscope mechanism.  

This class of mobile robots has many advantages over 
the conventional mobile robots. They have shells that 
protect themselves from external environment and are 
driven by internal mechanisms. Because of their smooth 
external profiles, they would not be stuck by any 
obstacles. They also have self-recovery ability after 
falling when they bump onto some objects. Furthermore 
they can be used in outdoor environment under various 
climates. This type of robots will be the alternative 
solution in exploration robotics. Wheel-like robots have 
narrow shape than spherical robots. So these robots are 
more suitable in exploring tasks especially the narrow 
passages. However, these robots are subject to the 
nonholonomic constraints while rolling without slipping 
on horizontal plane.  

The one-wheel robot is dynamically stable when speed 
of its internal gyroscope reaches the conditioning value. 
The gyroscopic effect is not only stabilizing and 
balancing the robot, but also steering the robot to track 
the desired trajectory. Stabilization is maintained in roll 
and vertical axis against disturbance from irregularity of 
terrain. Such robotic geometry simplifies motion 
planning and enhances reliability while moving in faster 
motion. 

Some researchers developed a rolling disk model which 
can be realized as a simplify version of a one-wheel 
robot. Rui and McClamroch [5] developed dynamic 
model of a rolling disk where they assumed that motions 
in roll, pitch and yaw axes were generated from three 
decouple torques. Yavin and Frangos [6] showed that 
only rolling and leaning torques are adequate for 
controlling a disk moving along the desired path. Xu et 
al. [7], [8], [9] developed the model of a one-wheel robot 
as a rolling disk, which had driving mechanism extended 
from Rui and McClamroch’s work. 

Most derivations above are based on Lagrange’s 
equation. For nonholonomic constrained systems, 
Lagrange multipliers will be solved complicatedly. 
Bloch et al. [10] proposed the elimination of Lagrange 
multipliers by using matrix partitioning. Alternatively, 
Kane’s equation [11] is used to formulate the dynamic 
equations concerning nonholonomic constraints. The 
main advantage of this method is to achieve the 
equations of motion in term of independent variables 
without using Lagrange multipliers. Computational 



complexity can be largely reduced. The equations of 
motion consist of kinematic equations, dynamic 
equations, and nonholonomic constraint equations. A set 
of differential-algebraic equations will be formed and 
will describe constrained dynamic systems behaviors. 

In this paper, we will analyze the motion of a one-wheel 
robot by using Kane’s equation. First, Kane’s method 
and the advantages will be presented. Next, dynamic 
modeling of the one-wheel robot will be derived. Finally, 
Numerical simulation and discussion will be provided. 
 
2. Equations of Nonholonomic Constrained Systems 
Kane proposed an effective formulation for dynamic 
modeling of multi-body systems. The generalized 
coordinates indicate the minimal set of coordinates 
described the system configurations. For nonholonomic 
constrained systems, the use of generalized speeds 
represents the smallest number of velocities variables to 
describe the possible motions of system. This number is 
called the degree of freedom of system. Kane’s method 
can impose nonholonomic constraints in the systems 
which can largely reduce complexity of computations. 
 
2.1 Kane’s Method 
For a system with n-generalized coordinates, 

n∈q \ subjected to m nonholonomic constraints, the 
generalized speeds, n∈u \ can be defined as 
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u Y q Z
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= +∑ �  ( 1, , )r n= …  (1) 

 
where q�  is time derivative of q ; riY  and rZ  are 
functions of q  and time t .  

The n-generalized speeds are composed of a p x 1 
unconstrained velocity vector, 1 2

T

s pu u u =  u …  
and an m x 1 constrained velocity vector,  

1 2

T

c p p nu u u+ + =  u … as 
 
 [ ]T= s cu u u  (2) 
 
where p n m= −  indicates not only the number of 
degrees of freedom of the nonholonomic system but also 
the smallest number of independent generalized speeds 
which describes the motions of system. 

The nonholonomic constraints can be represented as 
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where csA  and cB  are functions of q  and time t .  
 
 

Eq.(3) can be written in the Pfaffian form as 
 
 ( ) 0=A q q�  (4) 
 
where ( )A q  is an m x n full rank constraint matrix.  

Assume that ( )S q  is an n x p full rank matrix whose 
subset is a set of smooth and linearly independent 
vectors in the Null space of ( )A q , such we obtain 
 
 ( ) ( ) 0=A q S q  (5) 
 
Imposing nonholonomic constraints in Eq.(3) to the 
system, Eq.(1) can be solved for each q� , 
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where isW  and iX  are functions of q  and time t . Eq.(6) 
are kinematic equations and can be presented in form as 
 
 ( )=q S q u�  (7) 
 
where ( )qS  is an n x p full rank, Jacobian matrix that 
transforms independent velocities 1, , pu u…  to the 
velocities q� .  

Kane’s dynamic equations can be represented as: 
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where rF  is generalized active/external force and *

rF  is 
generalized inertia force; iR is active force; *

iR is inertia 
force; iP is the ith particle of system; iP

rv is partial 
velocity of particle iP  with respect to inertial frame;  
N is the number of particles. 

According to Eq.(8), it is equivalent to Newton’s second 
law of motion 
 
 0i i im− =R a  ( 1, , )i N= …  (11) 
 
where ia  is acceleration of the ith particle. 

The active forces iR  can be classified as applied forces 
a
iR  and constraint forces c

iR  which can be presented as:  

 
 a c

i i i= +R R R  (12) 



The constraint forces do no work which mean no any 
movement along the constraint force directions. Such it 
can be described as: 
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As seen in Eq.(13), the constraint forces are eliminated 
from the dynamic equations. Such the dynamic equations 
in Eqs.(8), (9) and (10) can be written in a form as  
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Eq.(14) shows that both applied forces and inertia forces 
are projected onto the motion which is allowed to move 
[12], [13]. 

In Eq.(1), one can choose any form of generalized 
speeds, but the choices of generalized speeds may affect 
the load of computation especially in large multi-body 
systems. Mitiguy and Kane [14] proposed the 
determination of generalized speeds and consequently 
Jacobian ( )S q , that lead to efficient computation of 
equations of motion.  
 
2.2 Normal Form of Nonholonomic Systems 
Dynamic model of constrained systems can be derived 
by several methods such as Newton-Euler’s equation, 
Lagrange’s equation or Kane’s method. By using 
Lagrange’s method, the dynamic model will be 
presented as: 
 
 ( ) ( , ) ( ) ( ) ( )T+ + = +M q q N q q G q E q τ A q λ�� �  (15) 
 
where M is an n x n mass matrix; N is an n x 1 a vector 
of coriolis and centrifugal forces; G is a n x 1 
gravitational force vector, E is an n x k input coefficient 
matrix; τ is a k x 1 external force vector; ( )A q is a 
constraint matrix which can be expressed in Eq.(4); and 
λ  is Lagrange’s multipliers vector. The constraint force 
can be represented as ( )TA q λ . 

According to Eqs.(5) and (7), we obtain 
 
 = +q Su Su��� �  (16) 
 0T =TS A λ  (17) 
 
From Eqs.(15), (16) and  (17), Lagrange multipliers can 
be eliminated as 
 
 ( )+ + + =T TS MSu MSu N G S Eτ��  (18) 
 
The system order will be reduced into n-m which is 
equal to the degrees of freedom of the system. 

Kane’s method is also used to derive the dynamic 
equations of m-nonholonomic constraint system. The 
dynamic equations can be expressed as: 
 
 ( ) ( , ) ( ) ( )+ + =M q u N q u G q E q τ�� � ��  (19) 
 
where M� is an (n-m) x (n-m) mass matrix; N� is an  
(n-m) x 1 vector of coriolis and centripetal forces; G� is 
an (n-m) x 1 gravitational force vector; E� is an (n-m) x k 
input coefficient matrix and  τ is a k x 1 external force 
vector. 

As seen in Eq.(19), Lagrange multipliers do not 
concerned. The nonholonomic constraints are integrated 
into the dynamic model. This leads to system order and 
computational complexity reductions.  

Eqs.(18) and (19) can be expressed equivalently as: 
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T
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T
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Elimination of the Lagrange multipliers makes the 
equations of motion concisely. System order is reduced 
to 2n-m equations. Both Eqs.(18) and (19) are Normal 
Form of equations of motion for nonholonomic systems. 
Eq.(15) derived by Lagrange’s method, n dynamic 
equations must be solved beforehand. Then the Lagrange 
multipliers will be eliminated further. Using Kane 
formulation, Eq.(19), n-m dynamic equations will be 
solved without the Lagrange multipliers. Obviously, 
Kane’s method is more suitable for dealing with 
nonholonomic systems. 
 
2.3 State Space Representation 
To represent state space form of a nonholonomic 
systems, kinematic equations, Eq.(7), and dynamic 
equations, Eq. (19) must be realized. Using Kane’s 
equation, the minimal set of state variables composed of 
the n-generalized coordinates and n-m generalized 
speeds can be obtained as shown  
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and state equations can be represented as 
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where 1f = Su ; 1

2 ( )−= − +f M N G�� � ; 1 0g = ; -1
2g = M E� �  

 
 
 



3. Modeling of a One-Wheel Robot 
Considering a rigid disk C, with a radius RW, is rolling 
on a horizontal plane H as shown in Fig. 1. The plane is 
fixed in inertial reference frame A, which formed by a 
set of unit vectors ax, ay and az. The moving reference 
frame B, composed of a set of unit vectors b1, b2 and b3, 
located at the center of the disk. The vector b1 is always 
parallel to the horizontal plane and collinear with 
heading of the disk. The vector b3 is a rolling axis of the 
disk and perpendicular to the disk plane. The disk always 
contacts with the plane H while rolling without slipping.  

Driving mechanism is composed of a two links and a 
gyroscope G attached at the end of the second link. It 
provides driving and leaning torques to control motion of 
the disk. The first link which has length L1 is connected 
to the disk at point C*, which is the center of the disk. It 
rotates about the b3 axis. The second link with length L2 
rotates about the e1 axis. It is connected between the first 
link at point W and the gyroscope at point G*. The 
gyroscope spins at constant speed about the f3 axis. Both 
links are assumed as mass-less. The mass of the driving 
mechanism is considered as a lump mass mp at point W. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Coordinate Assignment for a One-Wheel Robot 
Rolling on Horizontal Plane 

 
In order to formulate the equations of motion of a one-
wheel robot, we use assumptions appeared in [9] as 
follows: 
1) 2 0L = , so the mass center of the gyroscope is 
coincident with the mass of the driving mechanism mp. 
2) 6 0q = , Xu et al. [9] observed that the motion of the 
mass mp is too small and can be neglected at the steady 
state. 
3) 1 0L = , such the mass center of the gyroscope is 
coincident with the mass center of the disk  
4) Refer to assumption 3, driving torque from the mass 
mp will be absent. Such we assume that there is a 
fictitious driving torque, T2, applied to the disk  
5) The spinning rate of gyroscope 8q�  is set to be 
constant. Because of the momentum of the gyroscope is 
too large, it is difficult to change or control its speed.  
6) 7q�  is control directly by tilt motor and can be treat as 
new input, 1, 7eqT q= �  

Refer to the kinematic equations Eq.(7), and the dynamic 
equations Eq.(19). The equations of motion of the one-
wheel robot are analyzed, as follows:   
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Nonholonomic constraints can be presented as 
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4. Numerical Simulations  
A one-wheel robot motion with a leaning angle, 2q =20 
degree and a rolling generalized speed, 3u =15 rad/s is 
simulated.  

Parameters: G=9.81 m/s2, MW=1.25 kg, MP=4.4 kg, 
MG=2.4 kg, RW=0.17 m, RG=0.05 m, µS=0.1 Nm. 

Initial conditions: 1q =0, 2q =20 deg., 3q =0, 4q =0, 5q =0, 

6q =0, 7q =0, 1u =0, 2u =0, 3u  =15 rad/s, 8q�  =1500 rad/s. 

The robot is move in a circular path while its lean angle, 
2q  is gradually increased. The robot is falling according 

to friction affect as see in Fig.2, 3, and 4. Fig.2 shows 
the change of heading angle 1q , leaning angle 2q , and 
robot position 4q  and 5q . Fig.3 shows time derivative of 
generalized coordinates, iq�  and the generalized 
speeds, iu . Fig.4 shows position of a contact point 
( 4q , 5q ) of the robot on X-Y Plane. 

We also simulate a rolling disk motion with the same 
parameters and same initial conditions to compare the 
results with a one-wheel robot. Because the rolling disk 
model is well known and its motion very closed to a one-
wheel robot motion. 

Initial conditions: 1q =0, 2q =20 deg., 3q =0, 4q =0, 5q =0,  

1u =0, 2u =0, 3u  =15 rad/s. 

In Fig.5, 6, and 7, The disk rolling at the same speed as a 
one-wheel robot. But its leaning angle, 2q  growth up 
rapidly and the disk fall down finally.  

In  leaning motion, the gyroscope within a one-wheel 
robot produce momentum large enough to stabilize the 
robot. The gravity torque is also cancel and the robot is 
in dynamic equilibrium. Both the rolling disk and the 
one-wheel robot roll faster as their leaning angles 
increase. This behavior has been analyzed in [15]. 
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Fig.2 Generalized Coordinates iq  of a One-Wheel Robot 
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Fig.3 Position of a Contact Point ( 4q , 5q ) of  

a One-Wheel Robot on X-Y Plane 

0 2 4 6 8 10
-80

-60

-40

-20

0

Q
1d

 (
de

g/
s)

 
- S

te
er

in
g 

sp
ee

d

Time (sec)

0 2 4 6 8 10
-10

-5

0

5

10

Q
2d

 (
de

g/
s)

 
- L

ea
ni

ng
 s

pe
ed

Time (sec)

0 2 4 6 8 10
850

900

950

1000

Q
3d

 (
de

g/
s)

 
- R

ol
lin

g 
sp

ee
d

Time (sec)

0 2 4 6 8 10
-60

-40

-20

0

U
2 

(d
eg

/s
)

 - 
S

te
er

in
g 

ge
n.

 s
pe

ed

Time (sec)

0 2 4 6 8 10
-10

-5

0

5

10

U
1 

(d
eg

/s
) 

- L
ea

ni
ng

 g
en

 s
pe

ed

Time (sec)

0 2 4 6 8 10
850

900

950

U
3 

(d
eg

/s
) 

- R
ol

lin
g 

ge
n.

 s
pe

ed

Time (sec)  
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and Generalized Speeds iu  of a One-Wheel Robot 
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Fig.6 Position of a Contact Point ( 4q , 5q ) of  

a Rolling Disk on X-Y Plane 
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Fig.7 Time Derivative of Generalized Coordinates iq�  

and Generalized Speeds iu  of a Rolling Disk 
 
5. Conclusions and Future Works 
The advantages of using Kane’s method have showed 
that it is suitable for dealing with nonholonomic systems. 
Equations of motion of a one-wheel robot were derived 
by this method. Numerical simulations are presented to 
verify validity of the model in agreement with the 
Lagrange’s formulation found in early works by Xu [9]. 
In future works, the nonlinear controller of the one-
wheel robot for following desired paths will be 
proposed. 
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