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Abstract: In this paper, dynamic path planning of two
mobile robots using a modified Hopfield neural network is
studied. An area which excludes obstacles and allows
gradually changing of activation level of neurons is derived
in each step. Next moving step can be determined by
searching the next highest activated neuron. By learning
repeatedly, the steps will be generated from starting to goal
points. A path will be constructed from these steps.
Simulation showed the constructed paths of two mobile
robots, which are moving across each other to their goals.

1. Introduction
Obstacle avoidance is one of the most interesting

issues in mobile robot field. It has been applied on either a
single robot or multiple robot system. Many researchers
proposed their algorithms to solve obstacle avoidance
problem either static or dynamic environment.

Y. Arai, T. Fujii, H. Asama, Y. Kataoka [1] proposed
collision avoidance in multiple robot system. Their robots
are equipped with LOCISS. Each robot will recognize
whether the approaching object is another robot or obstacle.
The rule matrix for collision avoidance is predetermined.
Reinforcement learning is applied to acquire adaptive
behavior. Mochida, Ishiguro, Aoki and Uchikawa [2]
presented a behavior control method inspired by living
organisms which immune and emotion systems were
introduced to cope with dynamic changing environment.
The idea of emotional system was used to model frustration
function, which would be used to determine robot behavior.

Ishiguro, Watanabe and Uchikawa [3] introduced
using an immune system concept to cope with dynamic
changing environment. Antibody and antigen matching
were used to determine the robot behavior. Various kinds of
robot behavior were represented as antibodies. The
environment information was also set as antigens. The
immune network system selected an antibody, which was
most suitable for current situation or an antigen.

R. Mehrotra and D. M. Krause [4] presented an
obstacle free path planning by using a quadtree coding
method. M. G. Lagoudakis [5] introduced dynamic path
planning and obstacle avoidance by using the Hopfield
neural network. The idea of receptive field is presented.
The external input is added in a goal and obstacles. Such
the target is highest activated neuron. The activation levels
of neurons are spread decreasingly around the target as

wave propagation. However the Hopfield neural network
cannot guarantee the monotonically decreasing from the
goal because it employs symmetrical connection weights.
Activation level can propagate both directions. This
easily causes local peaks of activation level.

P. Ritthipravat and K. Nakayama [6] proposed a
modified Hopfield neural network for static obstacle
avoidance. By using asymmetric weight matrix, a
distinguishable area of activation levels from the starting
point to the goal can be constructed. The path can be
generated easily by considering highest activated neurons
in this area.

In this paper, dynamic path planning for multiple
robots is studied. Next section, the Hopfield neural
network will be introduced. Weight matrix determination
and a step selection are described. Simulation results of
dynamic path planning for either a robot or two robots
are presented and discussed.

2. Hopfield Neural Network
The Hopfield neural network was proposed in1982,

by physicist John J. Hopfield [7]. It can be used to solve
information retrieval or optimization problems. It has a
recurrent feature. Output of all another neurons, 

jv , are
fed back, weighted and summed to be the input to a
neuron 

iu . Only one neuron, i, is selected randomly and
updated its state in each time.
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where 
iu  is input potential of neuron i , 

jv  is output of
neuron j , 

ijw  is connection weight from neuron j to i and

iθ  is bias of neuron i
According to P. Ritthipravat and K. Nakayama [6]

external bias are added in the goal and obstacle units as:
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The effect of adding bias in Eq(2) is that the goal
unit will be maximally activated. The obstacle unit is
deactivated independently of other units.

The original Hopfield network assumes zero self-
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coupling, 0=iiw , and symmetrical weights, jiij ww = .
This symmetrical property guarantees that the system
energy function always converges to the basin of attraction
or the equilibrium state. This means no state changed
anymore.

Many forms of activation functions can be used to
classify an output level of a neuron accordance with its
input. In the discrete Hopfield network, we can use a sign
function to classify output to be either 1 or 0 as:
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Such output is discrete with value {1,0}. The output is
1 means the neuron is activated or fired. While the output is
0 means the neuron is deactivated or quenched. For the
analog Hopfield network, a sigmoid function or a
hyperbolic function can be used. For the sigmoid function,
the output is analog with value [0,1] as:
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For the hyperbolic function, the output is analog with value
[-1,1] as:
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In this paper, system state is set with value [0,1]. By
using the hyperbolic function, the activation function can
be presented as:
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Fig. 1 shows activation functions in each form. The
activation function used in this paper is shown with a
thickest line in the figure.

Figure 1. shows activation functions

3. Weight Matrix Determination
Either M. G. Lagoudakis [5] or P. Ritthipravat and K.

Nakayama [6] mapped the Configuration Space, C  into
neuron space. Each neuron corresponds to subset iC  of C .
Such all neurons can be represented as overall
Configuration Space. Each neuron has a receptive field,

iRF  which is subset of units of its neighborhood.  Each

unit i  connects to the units in its iRF . There are no
connections outside the receptive field. Weight is
determined as a decreasing function, which depends on
Euclidean distance ),( jiρ  between the units. Weight
between unit i  and unit j  can be represented as:

)),(( jifwij ρ= , (7)
The function can take various forms as:
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αγρρ −= . (8)

where γ  is a positive real number. α  indicates the width
of a decreasing function. It may be 2, 4 or more.

P. Ritthipravat and K. Nakayama [6] proposed the
modified Hopfield network by using asymmetric weight
matrix as follows:

Weight matrix is determined by using the distance
between the goal and each neuron. The strongest weight
will be set on a neuron, which is nearest to the goal
direction. The weight will be decreased spread out of the
strongest weight as shown in Fig. 2

Figure 2. shows relations of weight in each unit

Figure 3. shows asymmetric weight feature

As shown in Fig. 2, the largest weight is the weight
from a neuron (k,i) to a neuron (k-1,i+1), which locates
toward the goal direction. The connection weights from
the neuron (k,i) to (k-1,i) and (k,i+1) have the 2nd largest
value. By setting the weight in this manner, neurons,
which close to the goal direction, have higher activation
level and are activated easily. Such the level of activating
can be distinguished obviously. However the symmetrical
property could not be conserved as shown in Fig.3. The
weight from a neuron (k+1,i+1) to (k,i) is stronger than
weight from the neuron (k,i) to (k+1,i+1).

As expressed in Eq (8), the connection weigh can be
set accordance with the nearness to the goal by varying
γ in each direction.
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4. Step Selection
As discussed above, the level of activated neuron can

be separated noticeably. Next moving step will be
generated from selecting the best-activated neuron. The
‘best’ means it has the highest average neighboring
activated neurons. The criteria for selecting the best-
activated neuron is same as discussed in [6] as follows:

Two highest activated neurons are searched from its
closet neurons. The level of activating of their adjacent
units, excluding the current neuron and its neighborhood,
are compared and selected the highest one. Not only the
next step of its neighboring units is concerned, but
prevention of moving back to the previous step should also
be concerned in order to avoid loop constructing.

In order to compare the level of activation among
adjacent units, a diagram of current neuron (k,i) and its
vicinity are presented in Fig. 4.

Figure 4. shows a neuron (k,i) and its vicinity

There are 8 neighboring neurons around the neuron
(k,i). Each neighboring unit has its nearby units. Neuron (k-
1,i-1) has 5 next closest units, i.e., (k,i-2), (k-1,i-2), (k-2,i-
2), (k-2,i-1), (k-2,i). Neuron (k,i-1) has 3 next neighboring
units, i.e., (k+1,i-2), (k,i-2), (k-1,i-2). By considering in this
way, the adjoining units in each direction can be obtained.
Three highest units in each direction are averaged. Two of
them corresponding to two highest neighboring units are
used for next step selection. Such a flow chart of path
planning can be shows in Fig. 5.

Figure 5. shows system model

As seen in Fig.5, the step will be selected and set as a

sub-goal of a robot. The robot will move to the sub-goal
and begin to generate next sub-goal by using the previous
neuron states. If there is an obstacle, the external bias will
be added according to Eq(2). Doing this, dynamic path
planning will be generated. In order to apply this
algorithm to multiple robots, other robots will be realized
as obstacles. So deactivated neurons will be set in the
other robot positions.

5. Simulation Results
The simulation results are composed of 2 parts, i.e.,

comparison to a static path planning generated by [6] and
applying to two robots, which are moving across each
other. A network composes of 10x10 neurons. The
starting, goal and obstacle units are marked by ‘S’, ‘G’
and ‘O’, respectively. The starting and goal states are
fixed to be maximally activated neurons. The obstacle
states are set to be deactivated units. Initial state of
another neurons are selected randomly and scaled in a
range of [0,0.5]. For each step generation, different
learning time will be used. The 150 epochs will be set for
first 5 steps for an equilibrium state approaching purpose.
After that, the step can be selected by using 20 epochs
per step. So number of epochs can be calculated by
(150*5)+((number of step - 5)*20). After the step was
selected, the small negative bias was added to the
previous state in order to prevent moving back.

Figure 6. shows static path planning for application 1

Figure 7. shows dynamic path planning for application 1

By comparison to a static path planning which is
simulated for 1500 epochs, the simulation results are
shown in Figs. 6-7. The other dynamic path planning for
different application is presented in Fig. 8. Fig. 9 shows
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simulation result for two mobile robots, which are moving
across each other.

Figure 8. shows dynamic path planning for application 2

Figure 9. shows dynamic path planning for two robots

Figure 10. shows dynamic path planning for robot1

Figure 11. shows dynamic path planning for robot2

6. Discussion
By comparing to the static path planning which was

done until equilibrium state approaching, the simulation
result showed shorter time simulation and a shorter path
because the starting state had been changed according to
the step selection. The starting bias was also changed to
the next step. However it couldn’t move closely to
obstacles because the deactivated neuron and the small
negative bias in the previous step affects. Fig. 8 showed
these two affects obviously.

For the case of two robots that are moving across
each other, robot1 avoided robot2 when it came closely
as seen in Fig2 10,11. The robot1 selected the forth step
in a deviate direction for avoiding the robot2. This
showed the effective path for the robot path planning.

According to the learning must be done in each step
it couldn’t work for highly dynamic environment. Longer
learning time lead to more effective path generation.
However [6] had been showed that the learning time
should not take too long. It can be determined from the
minimum state energy as discussed in [6].

7. Conclusion
In this research, obstacle avoidance for multiple

robots is studied. Modified Hopfield network using
asymmetric weight matrix has been explored. The
moving step can be generated from the system model,
which are composed of the Modified Hopfield network
and the best step selection. The simulation results showed
effective path generations. However the learning still
takes time, such it couldn’t apply to highly dynamic
environment.
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