
Self-organized Learning in Complexity Growing of
Radial Basis Function Networks

Somwang Arisariyawong1 and Siam Charoenseang2

1Mechanical Engineering Department, Faculty of Engineering,
Srinakharinwirot University, Ongkharak, Nakornayok, 26120, Thailand

2 Center of Operation for FIeld roBOtics Development (FIBO)
King Mongkut’s University of Technology Thonburi
 Suksawasd, 48 Bangmod, Bangkok, 10140, Thailand

e-mail : somwang@psm.swu.ac.th, siam@fibo.kmutt.ac.th

Abstract: To obtain good performance of radial basis 
function (RBF) neural networks, it needs very careful 
consideration in design. The selection of several parameters 
such as the number of centers and widths of the radial basis 
functions must be considered carefully since they critically 
affect the network’s performance. We propose a learning 
algorithm for growing of complexity of RBF neural 
networks which is adapted automatically according to the 
complexity of tasks. The algorithm generates a new basis 
function based on the errors of network, the percentage of 
decreasing rate of errors and the nearest distance from input 
data to the center of hidden unit. The RBF’s center is 
located at the point where the maximum of absolute 
interference error occurs in the input space. The width is 
calculated based on the standard deviation of distance 
between the center and inputs data. The steepest descent 
method is also applied for adjusting the weights, centers, 
and widths.

To demonstrate the performance of the proposed 
algorithm, general problem of function estimation is 
evaluated. The results obtained from the simulation show 
that the proposed algorithm for RBF neural networks yields 
good performance in terms of convergence and accuracy 
compared with those obtained by conventional multilayer 
feedforward networks.

1. Introduction
Neural network research has gained increasing attention in 
recent years. Researchers from diverse areas, such as 
neuroscience, engineering, and computer science, are 
interested in recreating the computational structures of the 
human brain. One of the most important models is the 
feedforward artificial neural networks. The feedforward 
artificial neural networks are used to model some unknown 
system or process having an unambiguous input/output 
mapping. The network size, which is often measured by the 
number of hidden units in a single hidden layer network, 
reflects the capacity of the network to approximate an 
arbitrary function. A continuing question in the research of 
neural networks is what size of a neural network is required 
to solve a specific problem. If the training starts with a 
small network, it is possible that learning cannot be 
achieved. On the other hand, if a large network is used, the 
learning process can be very slow and/or overfitting may 
occur. Hence, there is no standard on how one can 
implement a network which will solve a specific problem. 
Generally, finding the suitable network size for a given 
problem, a trial and error approach is adopted. During a 

trial and error period, the searching will be terminated as 
soon as a satisfied performance is achieved.

Radial basis function (RBF) neural networks have been 
widely used for nonlinear function approximation. The 
original RBF method has been traditionally used for strict 
multivariable function interpolation [1] and it requires as 
many RBF neurons as data points. This is rarely practical 
because of the large size of data points. Broomhead and 
Lowe [2] removed this strict interpolation restriction and 
provided a neural network architecture where the number of 
RBF neurons can be far less than the data points. Compared 
with other types of neural networks like backpropagation 
feedforward networks, the RBF neural network requires 
less computation time for learning [3] and also has a more 
compact topology [4].

Although RBF neural networks are reported to be 
computationally efficient compared with feedforward 
neural networks but they have the important drawbacks. 
One drawback of RBF neural networks is that the number 
of radial basis functions are predetermined. This leads to 
similar problems as the determination of the number of 
hidden units for feedforward neural networks [5].

In this paper, we propose the learning algorithm that 
essentially allows for growing of complexity of RBF neural 
networks which is adapted automatically according to the 
complexity of tasks.

2. Model Description
In the RBF neural network model, the jth output, yj(i), is 
given by the following equation:
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where K  is  the number of RBFs used,  and
m

k
m

k RRc ∈∈ σ, , are the center value vector and the 
width value vector of RBF, respectively. These vectors are 
defined as:
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Also, { }Kkw jk ,  ,2 ,1 K=  are the weights of RBFs 
connected with the jth output. Figure 1 shows the structure 
of a RBF neural network.
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Figure 1. Structure of RBF neural network

The RBF neural network representation can be 
implemented in the form of a two-layered network. For a 
given set of centers, the first layer performs a fixed 
nonlinear transformation which maps the input space onto a 
new space. Each term (.)kΦ  forms the activation function 
in a unit of the hidden layer. The output layer then 
implements a linear combination of this new space.
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Moreover, the most popular choice for (.)φ  is the Gaussian 
form defined as

( )[ ]kikiikikiiki cxcx σσφ /exp),,( 2−−=      (4)

In this case, the jth output in equation (1) becomes
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Define the following sets:
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Given the N input/output data and the specified root mean 
squared error 0 >ε , the identification problem can be 
considered as obtaining the minimal number K of RBFs and 
the optimal solution ( )*** ,, WC Θ  which satisfies the 

inequality ( ) ε<Θ *** ,, WCE , where E is the optimization 
criteria defined as:
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where )( py j  and )( py d
j  are the jth model output and the

jth desired output, respectively, for the input of the training
set.

3. The Learning Scheme
In order to solve the identification problem, the gradients of 
E  are derived with respect to the parameters 

jkkiki wc  and , ,σ . Assuming that the number of RBFs, K, is 
fixed,
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By using the gradients in Equation (8), the identification 
problem can be solved for a fixed number of neurons by 
using appropriate gradient methods such as the steepest 
descent method. For N input/output data, the sets C(h), 

)(hσ , W(h) at iteration h are computed from the sets   C
(h-1), )1( −hσ , W(h-1) by the following learning rule
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I = 1, …, m,  k=1, …, K,   j=1, …, n, h is the iteration 
number.

3.1 The learning algorithm for growing of RBF
neural networks

The learning algorithm for allowing RBF neural networks
to grow during training is done by gradually increasing the
number of hidden units. The network begins with only one
hidden unit. The following three criteria decide whether an
input x(q) should be added to the hidden-layer of the
network,

nnr

h

cqx

hE

hEhE
hR

ehyhye

>∈−









−

−−
⋅=

>−=

)(

)1(
)1()(100)(

)(ˆ)( min

(10)

where R(h) is the percentaged decreasing rate of errors at
iteration h. cnr is center of a hidden unit whose distance
from x(q) is the nearest among those of all of the other
hidden unit centers. emin, nε , and Rε  are thresholds which
are selected appropriately.

If these criteria are found during the training process for
a fixed number of RBFs, a new basis function is generated.
The importance of this operation is that the model



completeness depends not only on the complexity of the
learning signal, but also on the structure of the model itself.

A new basis function is generated in such a way that its
center is located at the point where the maximum of
absolute inference error occurs in the input space. Let [x
(q),y(q)] be an input/output vector pair such that the
absolute inference error takes the maximum value at this
point. That is to find [x(q),y(q)] which satisfies
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Then, the (K+1)th new radial basis function is generated
according to
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Let K=K+1 and h=0, the steepest descent method is used to
determine the optimal solution according to the new
number of RBFs. The initial values for the other model
parameters are set identically to those obtained by the
previous iteration. At any iteration h, if the ∈< )(hE  is
satisfied, the learning process is terminated.

4. Experimental Results
In this section, simulations with the proposed algorithm for 
a static problem, namely, the nonlinear function 
approximations are evaluated. The experiments consist of 
two parts. The first part considers the case of one-to-one 
mapping and the second part explores the case of one-to-
many mapping. Results from the RBF neural network with 
our algorithm are compared with the results from multilayer 
feedforward neural network with backpropagation learning.

4.1 Part I. One-to-one mapping
Figure 1 shows the result of learning in one-to-one 
mapping. The error decreases as the number of hidden 
nodes increase. Figure 2 shows the result of sum squared 
errors obtained from the enhanced RBF neural network and 
the multilayer feedforward neural network with 
backpropagation learning. In Figure 2, the sum squared 
error of RBF neural network with our algorithm is reduced 
faster than the result obtained from multilayer feedforward 
neural network. Table 1 presents the parameters used in the 
enhanced RBF neural network and multilayer feedforward 
neural network.

Figure 1 and 2 showed that the RBF neural network 
with the proposed algorithm produced a good result with a 
small number of hidden nodes. To obtain the similar result, 
the multilayer feedforward neural network requires 
relatively larger number of hidden nodes as shown in Table 
1.

Figure 1. Function approximation by an enhanced self-
organizing algorithm

Figure 2. Sum squared errors obtained from two learning 
schemes

Table 1. The parameters of the neural network used in

                Part I with the sum squared error of 0.01.

Radial Basis Function
Network with a proposed
self-organizing algorithm

Multilayer Feedforward 
N e t w o r k  w i t h  
Backpropagation Learning 
(Learning rate = 0.01, 
Momentum = 0.9)

Number of
Basic Function

Epochs Number of
Hidden Nodes

Epochs

3 >10,000
12 2746
48 13433 215

128 338

4.2 Part II. One-to-many mapping
Figure 3 shows the capability of RBF neural network with 
our proposed algorithm when it is used in one-to-many 
mapping. The RBF neural network can reduce the sum 



squared error when the number of hidden nodes increase. 
Figure 4 shows the sum squared error obtained from a 
mu l t i l aye r  f eed fo rward  neu ra l  ne twork  wi th  
backpropagation learning.  Although the number of hidden 
nodes increase, the multilayer feedforward neural network 
still could not converge.

Figure 3. Function approximation by an enhanced self-
               organizing algorithm

Figure 4. Sum squared error obtained from a multilayer
               feedforward network with backpropagation

 learning

5. Conclusions
In this paper we presented the learning algorithm that 
allows for growing of complexity of RBF neural networks. 
It is also adapted automatically according to the complexity 
of tasks. Experimental results obtained from both one-to-
one mapping and one-to-many mapping were presented. 
The analysis and simulation showed that our learning 
algorithm provides the necessary and sufficient 
enhancement for growing of complexity of RBF neural 

network. Specifically, the enhanced RBF neural network 
showed excellent results compared with ones obtained from 
a mult ilayer feedforward neural network with 
backpropagation learning. Finally, this proposed algorithm 
could be implemented for solving several practical 
problems, e.g., human-to-robot skill transfers as well as 
rigorous mathematical analysis.
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