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1. INTRODUCTION 
 

Human driving is affected by many risk factors 
such as driver fatigue, bad visibility and intoxication. 
We have created a vehicle with an intelligent 
navigation system in order to assist human driving and 
eventually replace it in the future. This research 
project aims to create an autonomous vehicle that can 
navigate along a specified route. Using an intelligent 
decisioning system, the vehicle can avoid obstacles 
and follow the road even without explicit structural 
landmarks such as lines or markers. 

An unmanned ground vehicle or UGV is a vehicle 
that can be navigated autonomously along a specified 
path or to a given destination. In the DARPA Grand 
Challenge 2005 autonomous vehicle competition, the 
team 'Stanley' from University of Southern California 
won the competition by successfully navigating more 
than 60 miles in the Nevada desert [1]. Stanley's 
vehicle was modified from a Volkswagen Touareg. 
This vehicle was controlled by an onboard computer 
based on information about the environment perceived 
via various sensors including laser ranging radar 
(LIDAR), camera and GPS. The machine learning 
algorithm was used to combine information from 
various sensors in order to understand the condition of 
the road and to navigate the vehicle along a safe path 
with an appropriate speed.  

The autonomous navigation system for any UGV 
would require an ability to estimate the current 
absolute position of the vehicle as well as to identify 
an obstacle-free path immediately ahead of the vehicle. 
Multiple sensors are generally used to gather 
information of the vehicle position and the condition 
of its surroundings. Most research in the field of 
autonomous UGV's has been focused on using 
machine vision technology to identify road lanes and 
obstacles. The early work from Carnegie Mellon 
University [2] applied neural networks to road 
detection using a monocular camera system. Beauvais 
and Lakshmanan [3] used radar together with image 
information to identify road lines and obstacles. 
Apostoloff and Zelinsky [4] used active stereo vision 

to capture both near field and far field images to add to 
the ability of the system in identifying road condition 
at various distances. Georgiev and Allen [5] proposed 
a method of using an Extended Kalman Filter to 
combine odometry information together with compass 
and GPS sensors, then using image information to 
assist whenever the uncertainty is high. 

The method we use in our autonomous navigation 
system is a combination of a localization process, road 
following and obstacle avoidance. The localization 
process is based on information from various sensors 
including GPS and odometry, while the road following 
and obstacle avoidance process is based on 
information received from multiple cameras. 

One weakness we found in many methods for 
processing images is the usage of pixel thresholding 
and threshold values to do segmentation and other 
classification processes. Since image data is inherently 
continuous, any algorithm based on thresholding is 
subject to instability when measured values approach 
the thresholds. Throughout our methodology, we were 
careful to avoid the usage of any discontinuous 
thresholding. This approach results in a continuous 
space at each stage of processing, resulting in stable 
performance of the system under changes in 
environmental conditions. 

 
2. METHODOLOGY 

 
2.1 Unmanned Ground Vehicle 
The 'Darkhorse' unmanned ground vehicle (UGV) as 
shown in figure 1 has been designed and built by the 
team of mechanical engineering student from the 
mechanical engineering department at KMUTT. This 
vehicle is powered by a motorcycle internal 
combustion engine with an automatic transmission 
(110 CC/ 8 HP). Various kinds of sensor are used in 
this system. The encoder is attached to the right rear 
wheel for measuring the distance and the velocity of 
the vehicle. Another encoder is attached at the steering 
wheel to measure the turning angle. An Inertial 
Measurement Unit (IMU) which consists of three 
gyroscopes and three accelerometers is used to 
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measure angular velocity and acceleration, 
respectively. The ultrasonic sensors are attached in 
front of the car in order to detect a close-range 
obstacle. Global Positioning System (GPS) is also 
used to acquire the global position of the car. Up to 
four GPS modules are used in the system. Two 
cameras are installed for road tracking as well as 
detecting obstacles, traffic lights, and traffic signs. 
 

 
Fig. 1 Darkhorse UGV 

 
2.2 Sensor and Actuator System  
The low-level control system of the vehicle can be 
divided into 3 subsystems: the steering, the brake and 
the throttle systems.  All systems are driven by DC 
motors. The three subsystems are connected to the 
high-level control system in the on-board computer via 
RS-232, as shown in the diagram in fig 2.  

 
Fig. 2 Actuation System 

The sensor system on the vehicle is comprised of 
cameras, GPS modules and odometry sensing modules. 
Two cameras are installed on top of the vehicle as 
shown in fig.3. An image from the left and the right 
cameras are combined to give the full view of the road 
ahead with sufficient detail up to approximately 20 m. 
Four GPS modules are used with separate antennas 
installed on a metal sheet attached to the roof of the 
vehicle which provides a backplane for the antennas. 
Different brands of GPS modules were used: 3 Holux 
brand and one Ublox brand module. Multiple GPS 
modules allow more accurate position estimation due 
to the redundancy of information especially when 
multi-path errors occur. GPS modules provide absolute 
position information including latitude, longitude, 
speed and heading. Two encoders, one on the rear 
wheel and one on the steering column, provide 
odometry information such as distance traveled and 

speed of the vehicle as well as steering angle. 

 
Fig. 3 Two cameras were installed on top of the 

vehicle 
 

 
(a) 

 
 
 
 

 
 
 
    (b)         (c) 

 
Fig. 4 (a) Four GPS modules of two different 

brands were installed on the vehicle (b) HOLUX 
(c) Ublox  

 
3. AUTONOMOUS NAVIGATION SYSTEM 

The autonomous navigation system is comprised of 
two phases: the teaching phase and the playback phase. 
In the teaching phase, a human driver drives the 
vehicle along the desired route. During this phase, the 
localization system aggregates all of the sensor 
information and records the trajectory based on the 
estimated position of the vehicle. In the playback 
phase, the autonomous system uses the recorded 
trajectory as the reference trajectory for rough vehicle 
navigation, while the lane tracking and obstacle 
avoidance systems handle the fine control of the 
vehicle so that it stays on the road and does not collide 
into any obstacle. The system diagram of the 
autonomous navigation system is shown in figure 5. 
 

Throttle system 

Brake system

Steering system 

On-board 
computer
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Fig. 5 System diagram for the autonomous 
navigation system  
 
3.1 Sensor Aggregation Module 
An encoder at the steering column and another at the 
rear wheel provide readings for steering angle and the 
wheel rotation velocity to the localization module. The 
current position of the vehicle is updated according to 
this odometry information. All GPS modules provide 
latitude and longitude as well as speed and heading 
angle of the vehicle. The information from each GPS 
module is received at a frequency of 1 Hz. 
 
3.2 Localization System 
The localization system receives update from the 
encoders and calculates the current estimated position 
of the vehicle relative to the initial position based on 
the mathematical model of the vehicle. When the 
information from the GPS module is received, the 
current absolute position of the vehicle is updated. The 
estimate position of the vehicle was recorded in the 
teaching phase to create the reference trajectory for the 
autonomous playback phase. In the playback phase, 
the localization system provides the current estimate 
position of the vehicle to the autonomous navigation 
system to be compared with the reference trajectory as 
recorded in the teaching phase. This paragraph 
explains the position estimation algorithm.  
 
 

 
Fig. 6 GUI shows the current estimated position 
of the vehicle (green rectangle on the lower right 
corner) on the recorded trajectory (green line) 

 
3.3 Navigation and Obstacle Avoidance System 
In the autonomous navigation system, the current 
absolute position of the vehicle is compared to the 
nearest position in the reference trajectory within a 
specified time window. The error between the current 
position and the reference position is used to create a 
rough navigation decision for the vehicle control 
system.  
However, the rough navigation decision from the 
current estimated position is not sufficient for 
guaranteeing that the vehicle will stay on the road. The 
absolute position information from the GPS can have 
an error that is larger than 5 m which does not provide 
enough accuracy for the localization module to be 
used to control the vehicle on a road that is 5-10 m 
wide.  Therefore, image information from multiple 
cameras is used to evaluate the road area ahead of the 
vehicle. Fig.7 shows the captured images from the left 
and right cameras which can be combined to give a 
full view of the road ahead.  
 

 
Fig. 7 the captured images from the left and right 
cameras 
 

 
Fig. 8 the projected images from the left and 
right cameras after the scoring process (the 
red-channel represents the score associated with 
the dirt road, the green-channel represents the 
score associated with the grass, the blue line 
indicates the optimal chosen path) 
 
After the images are captured, a scoring function is 
applied to each cluster of pixels in the image to 
convert the RGB color values into a series of 
quantitative scores to determine the relative likelihood 
that a given region is road, grass, cement, or other 
known obstacle type. By assuming that the surface of 
the road in front of the vehicle is flat, we can remove 
the perspective from these scoring images by 
projecting them onto a hypothetical flat ground plane 
immediately ahead of the vehicle. While objects such 
as obstacles are not actually flat on the road, since 
their lowest point is resting on the road, this projection 
still works by accurately placing the lowest part of the 



88 
 

 

obstacle in its correct location on the ground plane 
while the projection of the upper parts onto the flat 
plane only create inaccuracies further away. This can 
be accommodated easily by accounting for this in the 
control algorithm. 
 
We assign an avoidance value to each of the scored 
object categories and then accumulate the product of 
the scoring values mentioned above times the 
avoidance value associating with that category of 
surface. These avoidance values reflect a subjective 
priority of importance on avoidance of a given type of 
object and are conceptually similar to a potential field 
approach. In our experiment we used the values listed 
in table 1. 

Table 1 The avoidance value 
 Avoidance value 

Initial score 0.5 

Road -1.5 
Grass 3 

Cement 1 
Known obstacle 2 

 
For example, if a given region of ground in front of 
the vehicle was computed to have a road score of .7, a 
grass score of .05, a cement score of .07 and all known 
obstacle scores to be 0, then the aggregated avoidance 
score would be 0.5 + .7*(-1.5) + .05*3 + .07*1 + 0*2 
= -.33. A lower avoidance score value suggests that the 
vehicle does not need to avoid that region while a 
higher avoidance score value suggests that such a 
region should likely be avoided. 
A region growing algorithm is employed to grow 
higher avoidance areas into lower avoidance areas to 
account for the size of the vehicle. This is similar to a 
typical C-space transformation although performed on 
the continuously variable avoidance scoring values 
rather than a binary occupation grid. The image of the 
avoidance value after the region growing is performed 
is shown in fig.9. 
 

 
Fig. 9 the projected images of the avoidance 
value (green represents a low avoidance value 
and red represents a high avoidance value) 
 
In order to compute a control value for both throttle 
and steering, the avoidance score value can be 
accumulated over a given path to determine the overall 
avoidance score of that path. By comparing the overall 

avoidance score between a number of different paths, 
the most suitable path can be chosen as the one with 
the lowest avoidance score. The steering angle is set in 
order to follow the initial optimal path vector, while 
the throttle command is chosen based on the 
magnitude of the overall avoidance score for this path. 
 

4. RESULTS AND DISCUSSION 
 
The Darkhorse UGV was tested at KMUTT football 
field and the Bangkok Racing Circuit (BRC). At 
KMUTT football field, the vehicle was driven around 
the football field on a dirt track during the teaching 
phase. The vehicle was then autonomously controlled 
in the playback mode guided by the reference 
trajectory as explained in section 3. The estimated 
position in the teaching and playback phases are 
shown in figure 10. Fig. 11 and 12 show the GPS 
position of the four GPS modules recorded 
simultaneously which are overlaid on top of the 
satellite image during the teaching phase and the 
latitude and longitude plot during the playback phase 
to show that the error of the GPS readings can largely 
degrade the accuracy of position estimation. Even 
when the position estimation is degraded, the vehicle 
successfully negotiates the path by using the camera 
information to remain on the track. 
 

 
Fig. 10 the estimated position in the teaching 
(red line) and autonomous playback (blue line) 
phase 

 

 
 

Fig. 11 the GPS position of four GPS’s and 
the estimated position overlaid on top of the 
satellite image of the KMUTT football field 

during the teaching phase 
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Fig. 12 the GPS position of four GPSs during 

the autonomous playback phase 
In order to test the performance of the obstacle 
avoidance feature in the navigation system, a red 
plastic board sized 1.5m x 1.5m was placed in the 
middle of the road at the BRC as shown in Fig.13. The 
roads at the BRC have a dark gray color with grass 
and sometimes cement on the side of the road and 
sometimes cement patches in the road. Figure 14 
shows an example of the ground-plane projected 
avoidance score image computed from both camera 
views. The red region on the left corresponds to a 
grass area on the left side of the road and shows a high 
avoidance score while the red region on the right 
corresponds to an obstacle in the road. The system 
computed an optimal path that avoids the obstacle on 
the right without going into the grass on the left. 

 

 
Fig. 13 the red obstacle was placed in the middle 
of the road at Bangkok Racing Circuit 

 
Fig. 14 the projected images of the avoidance 
value when the red obstacle was visible in the 
image (green represents a low avoidance value 
and red represents a high avoidance value) 
From the tests at both KMUTT and the BRC, the 

Darkhorse UGV vehicle successfully stayed on the 
road and avoided obstacles that can be visually 
distinguished from its surroundings such as a red or 
green plastic board at an average speed of 10 km/hr. 
Using the same previously recorded route and settings, 
these tests have been performed on different days at 
various times from 7 am to 6 pm, demonstrating that 
the autonomous navigation system is sufficiently 
robust for different lighting and environmental 
conditions. 

5. CONCLUSION 
 

The Darkhorse UGV was developed to be an 
autonomous ground vehicle that can navigate along a 
recorded trajectory that was previously driven by a 
human driver. The autonomous navigation system of 
this vehicle is based on a teaching and playback 
system. In the teaching phase, the trajectory is 
recorded from the estimated position of the vehicle 
based on various sensors. In the playback phase, the 
current estimated position is compared with the 
reference trajectory to give the rough control decision. 
The image information is used to perform a finer level 
control so that the vehicle can stay on the road and 
avoid obstacles while still generally following the 
reference trajectory. The fine control decision is 
determined by comparing an avoidance score metric 
over the set of possible immediate path options. The 
overall autonomous navigation system performed 
successfully by navigating the vehicle along various 
routes while avoiding obstacles. 
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