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Abstract: This research is focusing on the terrain classification using data from an Inertial Measurement Unit acquired 
during vehicle motion. The proposed classifier is different from the vibration-based classifier in the fact that it uses the 
relationship between different axis of input as well as the spectral information to classify the difference between 
terrains. The data from the Inertial Measurement Unit (IMU) are three axes acceleration and three axes angular velocity. 
The acquired data are preprocessed and filtered by fuzzy rules, then classified by a neural network into 5 categories: flat 
plane, rugged terrain, grassy terrain, incline plane and unclassified. The trained networks were experimentally validated 
with 100 samples in each category. The result shows that the proposed classification method can classify a flat plane, 
rugged terrain, and incline plane 100% correctly. For grassy terrain, it can be classified correctly about 80%.  
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1. INTRODUCTION 
 

     Currently, technology related to an autonomous 
vehicle has been widely discussed. The terrain 
classification is one of the features needed in a 
navigation or a localization system for an autonomous 
vehicle. Most researches in terrain classification focused 
on the technique that required an input from a camera 
such as works by Talukder et al. (2002) [1] and Larson, 
Voyles & Demir (2004) [2]. The other approach is to 
use multiple sensors including odometry sensor, Inertial 
Measurement Unit together with range sensor such as 
works by Ojeda et al (2005) [3]. Brookes, Lagnemma 
and Dobowsky (2005) [4] suggested the method of 
terrain classification based on vibration measurement 
from an accelerometer using the linear discriminant 
analysis for the planetary exploration rovers. 

 
2. TERRAIN CLASSIFICATON 

 
     Output data from IMU consists of AccX (x-axis 
acceleration), AccY (y-axis acceleration), AccZ (z-axis 
acceleration), Roll (x-axis angular velocity), Pitch (y-
axis angular velocity) and Yaw (z-axis angular 
velocity). 

 

  
 

Fig. 1 The car axes. 
 

     According to Fig. 1, the car moved forward along the 
y-axis. The x-axis and the z-axis were the directions that 
it moved horizontally and vertically, respectively. As 
the car travelled on four kinds of terrain, flat plane, 

rugged terrain, grassy terrain, and incline plane, the 
output data from IMU was considered. While the car 
was moving, the acceleration data became quite noisy, 
thus less reliable for terrain classification. However, 
when traveling on grassy terrain, y-axis acceleration 
output magnitude was quite small when compared with 
the other terrains. Moreover, Roll (y-axis angular 
velocity) was the important variable for terrain 
classification. For flat plane, Roll magnitude and its 
variance were small, but for rugged terrain, the variance 
of Roll was quite large. For grassy terrain, Yaw and 
AccY were considered as these two signals were small 
in magnitude, and when the car moved on incline 
terrain, the result of Roll magnitude output was very 
small. Thus, 5 signals including running average of 
AccY, running average of Roll, running average of 
Pitch, running average of Yaw, and running standard 
deviation of Roll, were used as inputs of fuzzy logic 
filtering stage. 

 
3. SYSTEM DESIGN 

 
     A localization system for a vehicle is usually done by 
analyzing and determining the relationship between 
various kinds of sensor measurements. As each sensor 
have its own behavior, advantages, and drawbacks. 
Therefore, the more data fusion from multi-sensor, the 
more accurate position estimation. The designed 
position estimation algorithm can be seen in Fig. 2. GPS 
and rear wheel encoder were used as inputs of position 
estimation using Extended Kalman filter with multiple 
models switching. The multiple models are designed 
according to the kinds of terrain that the vehicle 
travelled on, which consist of flat plane, rugged terrain, 
grassy terrain, and incline plane. In each case, the data 
from IMU are different, and the estimated state 
variables change according to the terrain. This paper 
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focused on terrain classification using fuzzy neuron 
method. The outputs from IMU were statistically 
preprocessed and filtered by the fuzzy logic, and the 
outputs from the fuzzy stage were then fed as the input 
to neural network for terrain classification. 

 

 
 
Fig. 2 Position Estimation Algorithm. 

4. The Experimental Platform 

  The radio control car that was used as the experimental 
vehicle is shown in Fig. 3.  

 

Fig. 3 The radio control car was used in the experiment. 

   

Fig. 4 The 6-DOF Inertial Measurement Unit (IMU). 

     A six-degree of freedom Inertial Measurement Unit 
(IMU), shown in Fig. 4, was attached to the car. The 
IMU consists of three axes of acceleration (AccX, 
AccY, and AccZ) and three axes of angular velocity 
(Roll, Pitch, and Yaw). 

4.1 Data Collection 
     The vehicle was controlled via a remote control to 
travel on four different kinds of terrains, which are flat 
plane, rugged terrain, grassy terrain, and incline plane, 
as could be seen in Fig. 5. For each terrain, the car 
moved straightforward with 1 m/s velocity for 2 meters 

long. The IMU was set to measure acceleration and 
angular velocity at 50 Hertz, or every 20 milliseconds. 
The data was collected 10 times for each kind of 
terrains. These data was then used as train set and test 
set for the terrain classification module. 
 

   
     a   b 

         
        c             d 
 

Fig. 5 Four kinds of terrains in the experiment.  a) flat 
plane, b) rugged terrain, c) grassy terrain,  

d) incline plane. 
 

4.2Preprocessing data 
     After acquiring data from sensor, they were then 
statistically preprocessed. As there are 10 data sets for 
each terrain, 5 data sets were used as training data, and 
5 data sets were used as testing data for the 
classification process from the data acquired by the 
IMU. According to the output data set from IMU, 4 
types of signal were collected, which are AccY, Pitch, 
Roll, and Yaw. For AccY, its unit was converted from 
10 bit binary to m/s2 with range of 2g sensitivity. For 
Pitch, Roll, and Yaw, their units were converted from 
10 bit binary to degrees per second. The absolute values 
of these data were preprocessed by the running average 
as shown in Fig. 6. Finally, there were 5 kinds of data, 
running average (with 5 data points window) of AccY, 
Pitch, Roll, Yaw, and the running standard deviation of 
Roll, that were inputs of the fuzzy logic. 
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Fig. 6 The data were preprocessed by the running 
average. a) Graph of the running average of Roll, Pitch, 

and Yaw on grassy terrain. b) Graph of the running 
average of Roll, Pitch, and Yaw on flat plane. 

 
4.3  Fuzzy Logic Filter 
     Fuzzy logic was designed to filter the data from IMU 
after preprocessing, which were the running average of 
Roll, Pitch, Yaw, AccY, and running standard deviation 
of Roll before feeding into neural network as the inputs. 
The fuzzy rules were designed with Mamdani-Min 
implication and Max-Min composition. The output 
fuzzy rules of AccY and SD Roll were defined as 2 
types.  For Pitch and Yaw, their output fuzzy rules were 
defined as 4 types. The output fuzzy rules of Roll could 
be defined as 3 types. The defuzzifier was designed with 
the method of Center of Area (COA). Running average 
of AccY was fuzzified into low AccY, medium AccY 
and high AccY. Running average of Roll was fuzzified 
into very low Roll, low Roll, medium Roll, high Roll, 
and very high Roll. Running average of Pitch was 
fuzzified into low Pitch, medium Pitch, and high Pitch. 
Running average of Yaw was fuzzified into very low 
Yaw, low Yaw, medium Yaw, high Yaw, and very high 
Yaw. Standard deviation of Roll was fuzzified into low 
SD Roll, medium SD Roll, and high SD Roll. The 
membership functions of inputs were shown in Fig. 7. 
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Fig. 7 The input membership function of the designed 
fuzzy. a) Running average of AccY, b) Running average 
of Pitch, c) Running average of Roll, d) Running SD of 
Roll, e) Running average of Yaw. 
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The output fuzzy rules were defined as 
 
AccY 
IF AccY is low    THEN AccY is 1 ELSE 
IF AccY is medium or high THEN AccY is 2  
 
Roll 
IF Roll is very low            THEN Roll is 1 ELSE 
IF Roll is low or medium  THEN Roll is 2 ELSE 
IF Roll is medium or high THEN Roll is 3 ELSE 
IF Roll is very high           THEN Roll is 4 
 
Pitch 
IF Pitch is low or medium  THEN Pitch is 1 ELSE 
IF Pitch is medium   THEN Pitch is 2 ELSE 
IF Pitch is medium or high THEN Pitch is 3 
 
Yaw 
IF Yaw is very low            THEN Yaw is 1 ELSE 
IF Yaw is low or medium  THEN Yaw is 2 ELSE 
IF Yaw is medium or high THEN Yaw is 3 ELSE 
IF Yaw is very high  THEN Yaw is 4 
 
Roll SD 
IF Roll SD is low  THEN Roll SD is 1 ELSE 
IF Roll SD is medium or high THEN Roll SD is 2 
 
4.4 Neural Network 
     The feed forward neural network was used in the 
classification with 5 inputs from the preprocessing stage 
and the fuzzy filter including the running average of 
AccY, Pitch, Roll, Yaw and the running standard 
deviation of Roll which has already filtered into a 
discrete level. The neural network had 1 hidden layer, 
10 hidden nodes and 5 outputs, flat plane, rugged 
terrain, grassy terrain, incline plane, and unclassified, as 
shown in Fig. 8. The neural network was trained off-line 
using 5 sets of 100 samples for each category and the 
learning constant was 0.2. The target output was set as 1 
of C representation. 

Flat plane 10000 
Rugged terrain 01000 
Grassy terrain 00100 
Incline plane 00010 
Unclassified 00001 
 

 
Fig. 8 Structure of the neural networks used for terrain 

classification. 
 

5. EXPERIMENTAL RESULT 
 

     After training the neural network, we obtained the 
appropriate weights. These weights were used in testing 
the neural network. The 5 data sets of 100 samples for 
each category (the test set) were tested as the input of 
neural network. Each sample of data would correspond 
to one output. All samples were tested and the number 
of samples of 5 classified output types including flat 
plane, rugged terrain, grassy terrain, incline plane and 
unclassified within 100 data points were counted. The 
classified terrain is chosen according to the terrain type 
that gained the maximum percentage after omitting 
samples that classified as unclassified type. The result 
can be seen in table 1 shown below. The percentage of 
maximum output of 4 terrains that was selected as the 
final output are shown in the last column of table 1 as 
flat plane, rugged plane, grassy terrain, or incline 
terrain.   

Table 1. The result of terrain classification from neural 
network. 
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     The result in Table 1 showed that the proposed 
classification method can classify a flat plane, a rugged 
terrain, and an incline plane 100% correctly. The grassy 
terrain can be classified correctly about 60% of the test 
samples. 

 
6. CONCLUSION 

 
     The terrain classification is one of the features 
needed in a navigation or a localization system for an 
autonomous vehicle. This paper focused on the terrain 
classification using data from an Inertial Measurement 
Unit (IMU) acquired during vehicle motion. The output 
data from the IMU are three axes acceleration and three 
axes angular velocity. The acquired data are statistically 
preprocessed and fuzzified by fuzzy rules, then 
classified by a neural network into 5 categories: flat 
plane, rugged terrain, grassy terrain, incline plane and 
unclassified. The result showed that the proposed 
method can classify flat plane, rugged terrain, and 
incline plane 100% correctly. For grassy terrain, it can 
be classified correctly about 80%. The proposed terrain 
classification method will be incorporated into the 
position estimation algorithm for the autonomous 
vehicle system.   
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