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Abstract—Dimensionality reduction technique is an essential
method for sEMG signal pattern recognition and classification,
especially for real-time application such as prosthesis control.
This technique can reduce the high dimension extracted feature
into a lower dimension space feature which help the classifier
works more properly. This paper presents an application of a
dimensionality reduction technique called neighborhood compo-
nents analysis (NCA). We evaluate the efficiency of NCA by
comparing its class separability and the classification accuracy
with other three algorithms: principle component analysis (PCA),
linear discriminant analysis (LDA) and local preserving pro-
jection (LPP). The result shows that NCA outperform other
algorithm in the class separability, and its classification accuracy
is also slightly higher.

Index Terms—neighborhood components analysis (NCA), sur-
face electromyography (sEMG), myoelectric, gait phase, pattern
recognition, dimensionality reduction

I. INTRODUCTION

Surface electromyography (sEMG) is a method to record
the myoelectric signal which are formed by physiological
variations in the state of muscle fiber membranes. In the
field of engineering, sEMG signal is widely used in many
studies such as intelligent prosthetic and exoskeleton control
input [1]–[4], because of its ability in direct inflecting user’s
movement intention. Therefore, improving the performance
of sEMG pattern recognition is theory essential for real-
time applications. Many schemes and techniques were
introduced to increase the system accuracy and reduce the
computational time [4]–[10]. One widely used technique
that makes the recognition more effective is dimensionality
reduction. It is implemented when transformation of high-
dimension into a lower dimension space is required, while
significant characteristics of the original feature are still
preserved. On the other hand, feature projection would
make separability of each class higher. And, the system
classifier can work more properly. There are several
dimensionality reduction techniques which are introduced to
handle sEMG signals. K. Englehart, B. Hudgins et al. [8]
had defined the classification problem into three sections
consisting of feature extraction, dimensionality reduction

and classification. For the dimensionality reduction, principle
components analysis (PCA) was selected to perform a linear
feature projection. Their research showed that the application
of PCA was critical to the success of the time-frequency
based feature sets, and that PCA was superior to other
forms of dimensionality reduction. A combination method
between PCA and self-organizing feature map (SOFM) was
presented in [11]. Eight classes of the input feature were first
projected by PCA into a 2-dimension space and then was
enhanced separation margin by SOFM. It is quite obvious
that the final projected features have more separability than
only PCA projected. According to [2], PCA was compared
with other three projection techniques; linear discriminant
analysis (LDA), nonlinear discriminant analysis (NLDA) and
self-organizing feature map (SOFM) by using Sammon’s
stress (E) and Fisher’s index (J) as two separability measures.
The final result showed that PCA was outperformed by LDA
projection with 0.976 of E and 25345.8 of J. However, [12]
shows that there are some drawbacks of LDA when the
number of samples per class is small or the training data
non-uniformly sample the underlying distribution. In a real
situation, a suitable number of the sample data is unknown.

A novel supervised non-parametric dimensionality reduction
method called neighborhood components analysis (NCA) was
proposed by Jacob G. et al [13]. It is a method for learning
a Mahalanobis distance measure, used in the k-nearest
neighborhood classification algorithm. And, it is capable of
learning a low-dimensional linear embedding of labeled data.
Comparing with two classical algorithms, PCA and LDA, the
NCA transformation gives higher class separability than the
others.

In this paper, we present an application of the NCA for gait
phase sEMG signal dimensionality reduction comparing with
the other three projection techniques: PCA LDA, and LPP.
Two main gait phases, namely stance phase and swing phase,
are considered in this study. To evaluate the efficiency of
each algorithm, two class separability measures: Thornton’s
separability index (IS) and direct class separability measure
(DCSM ), in [14] were applied. Finally, the result of
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Fig. 1. Electrodes Location: (1) rectus femoris, (2) biceps femoris, (3) medial
gastrocnemius and (4) tibialis anterior

Fig. 2. Raw sEMG signals of a single left leg walk cycle with two force
plate signals. The top two signal on the graph are the force signals.

classification accuracy is shown via the support vector
machine (SVM).

II. METHODOLOGY

A. EMG Data Acquisition

The high-end wireless EMG signal recording equipment,
ZeroWire from Noraxon, is used in this study. sEMG signals
are collected from four muscles on both legs; namely rectus
femoris, biceps femoris, medial gastrocnemius and tibialis
anterior, with 16-bit data and sampling rate of 1500 Hz. The
bandpass filter between 10 to 1000 Hz is applied to the signals.
The Ag-AgCl electrodes were attached on legs of a subject as
shown in Fig. 1. Five healthy male subjects aged between
20 to 26 years old were instructed to walk bare foot at a
comfortable pace 5 times repeatedly. The walk path is a 10
meters hard floor implanted with three force plates which are
used to identify the interval of swing phase and stance phase.

The raw sEMG signals are labeled manually accordingly
to the force signal. Stance phase interval will first start when
a signal from a force plate appears and stop when value of
the force signal is zero. Figure 2 illustrates sEMG signals
collected from a gait cycle. The classes of stance- and swing-
phase signals are marked as 1 and -1, respectively. The whole

data of each class is divided into two equal sets, a training set
and a testing set for the classification.

B. Feature Extraction

While using the raw sEMG signal is very difficult to classify
movements or activities of users, various types of feature
extraction and their combination are introduced to make the
sEMG pattern classification more reliable [5], [8], [15]–[17]
. In this study, we will mention only the time-domain feature
extractions.

Mean Absolute Value (MAV) is one of the most popular
time-domain feature extraction for sEMG signal classification.
It is the average of the absolute value of sEMG signal which
shows the muscle contracting amplitude. The MAV is defined
as

MAV =
1

N

N∑
i=1

|xi| (1)

where N is length of the signal in a segment and xi is a sEMG
signal value of the ith sample.

Waveform Length (WL) is the cumulative length of the
waveform over the time segment. WL is related to the wave-
form amplitude, frequency and time. It is given by

WL =
1

N

N−1∑
i=1

|xi+1 − xi| (2)

Variance (VAR) uses the power of the sEMG signal as a
feature. Generally, the variance is the mean value of the square
of the deviation, which can be calculated by

V AR =
1

N − 1

N∑
i=1

xi
2 (3)

Here, we remark that the average value of sEMG signal (xi)
is approximately zero

Root Mean Square (RMS) is modeled as amplitude mod-
ulated Gaussian random process whose RMS is related to
the constant force and non-fatiguing contraction. It can be
expressed as

RMS =

√√√√ 1

N

N∑
i=1

x2i (4)

Willison Amplitude (WAMP) is a number of times that
the difference between sEMG signal amplitude among two
adjacent segments exceeds a predefined threshold. It is related
to the firing of motor unit action potentials (MUAP) and the
muscle contraction level. The definition of WAMP is

WAMP =
N−1∑
i=1

f(|xi − xi+1|)

f(x) =

{
1, if x ≥ threshold
0, otherwise

(5)

Generally, the threshold value is suggested to be in a range
of 10 and 100 mV, depending on the setting of the gain value
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of instrument [17]. In this study, the the threshold is chosen
to be 30 mV.

MAV, WL, VAR and RMS are calculated in a segment
of sEMG signal. According to the real-time control scheme
presented in [7], the performance of the analysis window
length (Ta) between 32 ms to 256 ms is not significantly
different. Thus, the Ta and window sliding time are selected
to be 64 ms and 32 ms, respectively. And, the sample number
in a calculating segment (N ) is 96.

C. Dimensional Reduction

After the feature extraction, each feature vector will be
reduced its dimension into 2 using four algorithms separately
for faster computational time and less complexity in the
classification. The number of feature dimension depends on the
number of sEMG channels. Therefore, these features consist
of 4-dimensional vectors.

Neighborhood Components Analysis (NCA): This algorithm
is a novel method proposed by J. Goldberger et al. for
learning a Mahalanobis distance measure used in the k-
nearest neighborhood (KNN) classification algorithm. The Ma-
halanobis distance matrices can be represented by symmetric
positive semi-definite matrices and estimated using inverse
square roots. Instead of estimating the actual leave-one-out
classification error of KNN, a more effective measure by using
a differentiable cost function based on a stochastic neighbor
assignment in the transformed space was introduced. Define
the probability that a point i selects another point j as its
neighbor (pij) as

pij =
exp (−‖Axi −Axj‖2)∑
k 6=i exp (−‖Axi −Axk‖

2
)

, pii = 0 (6)

where A is a linear transformation matrix. The objective of
NCA is to maximize the expected number of points correctly
classified under the scheme

f(A) =
∑
i

∑
i∈Ci

pij =
∑
i

pi (7)

D. Class Separability Measures

Thornton’s separability index (SI): This is a measure of the
degree to which inputs associate with the same output cluster
together. It is shown in [18] to be an effective measure of class
separability. The output value of SI is range between 0 and
1. In the case that each class is in a well-separated cluster, the
output will be close to 1. And, the index will approach to 0
when the clusters move closer. The SI is defined as:

SI =

n∑
i=1

(f(xi) + f(x′i) + 1) mod 2

n
(8)

where f is a binary target function, x′i is the nearest neighbor
of xi and n is the number of points.

Direct Class Separability Measures (DCSM): This measure
is a more informative measure for separability than the class
scatter matrices approach [14]. It directly measures how com-
pact each class is as compared to how far it is from the other
class by using the within class distance (Sw) and between class
distances (Sb). DCSM is calculated from:

DCSM = [Sb − Sw] (9)

Sw =
ni∑

i1=1

ni∑
i2=1

‖xi1 − xi2‖ (10)

Sb =
ni∑
i=1

nj∑
j=1

‖xi − xj‖ (11)

where ni, nj are the numbers of instances in class i, j
respectively and xi, xj are the instances. Denoting, the stance-
phase and stance-phase as Sw+ and Sw−, respectively. The
result of DSCM can be interpreted that if for one dataset,
Sb < Sw− and Sb > Sw+, then the scattering of the swing-
phase class is more than the scattering between swing-phase
class and the stance-phase class. Furthermore, the swing-phase
class overlaps the stance-phase class.

Ploting between the DSCM against SI can show more
separabirity information of the transformed feature. When a
slope of the relationship between DCSM and SI of both
classes are the same, the classes are easily separated. And, if
the slope are different, one class is overlapping the other.

E. Pattern Classification

The classifier we use in this study is a binary support
vector machine (SVM) which is a powerful classifier. Fast
computational time and ability to handle non-linearity of
SVM are advantages which are suitable for sEMG signal
classification [9]. Radial basis function (RBF) in (12) with
the γ = 1/2σ2 is used as the kernel function of SVM.

k(xi, xj) = exp(−γ ‖xi − xj‖2) (12)

The SVM is first trained by the training data set, then tests
the system accuracy by another testing set.

III. RESULT AND DISCUSSION

The performance of each dimensionality reduction algo-
rithm is compared by two values: class separability and
classification accuracy. The assumption is that, a class which
has more separability should get more accuracy in the classi-
fication.

Class separability

As showing in Fig. 3, all extracted features are reduced from
4-dimensional into 2-dimensional space. The class separability
can reveal the information of how easy these data sets can be
separated. Considering just the SI in Fig. 4, it can be seen
that the separability of NCA in the MAV RMS and WAMP
is higher than those from other algorithms. Furthermore, the
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Fig. 3. The 2-dimension projected features by NCA, PCA, LDA and LPP.

Fig. 4. Thornton’s separability index (SI) of each algorithm.

(a) Sw+ vs. SI (b) Sw− vs. SI

Fig. 5. DCSM vs. SI

MAV and RMS features projected by NCA can gain the max-
imum score of SI . This means the stance-phase and swing-
phase class of these two data sets are completely separated.

So, MAV and RMS are good feature extractions for the NCA
system. LDA, PCA and LPP get less average score than NCA.
Regarding to the variation of SI for each feature extraction,
the dimensionality reduction algorithms are much effective
to MAV, WL VAR and RMS. The small variation of SI in
WAMP can be explained that it is not much different for each
algorithm to be applied with WAMP.

To investigate more information, the data plot between
DSCM of stance-phase class (Sw+) versus SI and DSCM
of swing-phase class (Sw−) versus SI are shown in Fig. 5.
The slopes of both two graphs are quite the same which means
that the stance-phase class and the swing-phase class are easily
separated. In Fig. 5, the outlier of NCA in the graph is the
value of WL. This result can be compared with the projected
feature plot in Fig. 3 that there are more overlapping data point
than other features. Even though, the slope of LDA is more
similar to each other than the NCA, and it has no outlier. NCA
is more easily separable than LCA, bacause three right most
data points on both graph in Fig. 5 are the NCA. Therefore,
the dimensionality reduction technique that can gain most class
separability is the NCA.

Classification accuracy

As shown in Fig. 6, every feature from all dimensionality
reduction techniques can give the accuracy more than 90 %.
The most accurate system is the projected feature of MAV
from NCA, with the result of 99.69% accuracy. And, the
second most accurate system is also the RMS from NCA.
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Fig. 6. Classification accuracy of each projected feature

TABLE I
AVERAGE CLASSIFICATION ACCURACY AND THORNTON’S SEPARABILITY

INDEX FOR EACH DIMENSIONALITY REDUCTION ALGORITHM

NCA PCA LDA LPP

Accuracy 97.332 % 95.592 % 96.400 % 95.536 %

IS 0.959 0.888 0.938 0.879

According to the Table I, it is seen that class separability of
the sEMG data set relates to the classification accuracy.

IV. CONCLUSION

We have investigated an application of NCA to reduce
the dimension of the gait phase sEMG signals and make the
classification system gains more accuracy. The results show
that NCA yields better class separability. Furthermore, the
average classification accuracy of the transformed features by
NCA is higher than PCA, LDA and LPP. Therefore, NCA can
be used as the dimensionality reduction technique for sEMG
signal classification system better than the conventional
techniques.

The future work on this study is to investigate on the
computational time on the real system.
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